Forecasting of Compression Index

bv

...

D. P. Sengupta*

Introduction

EMPIRICAL approaches for prediction of Compression Index have been advanced by Skempton (1944), Hough, and Cozzolino (1961). A study was taken up at the Central Building Research Institute also and formulae have been developed [Sengupta and Juneja (1965)].

Consolidation tests were carried out on remoulded samples prepared from seven different cohesive soils with different compressibilities, collected from various parts of India. Samples were prepared to possess different initial void ratio ranging from 0.5 to 1.0. Liquid, plastic and shrinkage limits of the soils were also determined.

Relationship of C_c with e_o

The correlation between C_e and e_o for the various soils is shown in Figure 1. For all practical purposes, the $C_e - e_o$ relationship for a soil was found to be linear and the seven soils produced a set of parallel straight lines with the same slope leading to the equation of the form :

$$C_c = 0.21 \ e_o + C \qquad \dots (1)$$

where, C is the intercept of the $C_c - e_o$ line produced to meet the 'Y' axis. It may be mentioned here that 'C' does not represent C_c at zero voids ratio, but it merely defines the $C_c - e_o$ line between the limits of void ratio (0.5 to 1.0) used in this investigation.

Relationship between the Intercept 'C' and a Soil Property

Attempt was made to correlate the intercept 'C' with liquid limit, plastic limit, etc., of the respective soil. The plastic limit showed the best relationship (Figure 2), which could be expressed by the equation :

$$C = 0.0111 PL - 0.17 \dots (2)$$

^{*} Scientist, Central Building Research Institute, Roorkee, U.P. This paper (modified) was received on 6 June 1974. It is open for discussion up to January 1975.

Indore;
Madras;
Dudhwa;
Bhopal;
Roorkee;
Durgapur;
and 7. Bhagalpur].

With liquid limit the following relationship could be drawn (Figure 3):

$$C = 0.00314 \ LL - 0.07 \qquad \dots (3)$$

The Final Formulae

Combining Equations (1), (2) and (3), the following equations could be established for prediction of C_c :

$$C_e = 0.21 e_o + 0.0111 PL - 0.17$$

 $C_e = 0.21 e_o + 0.00314 LL - 0.07$

and

INDIAN GEOTECHNICAL JOURNAL

FIGURE 2: Relationship between C and plastic limit [C represents the intercepts of $C_c - e_o$ plots on C_c axis].

Application of the Formulae

In Table I, the predicted values of C_c using Skempton's, Hough's and Sengupta's equations are given. It can be noticed from the table that Skempton's equation gives the same value of C_c for a particular soil for all values of e_c . Hough's equation gives the same value of C_c for all soils for a particular value of e_c . The Sengupta's equations take into account both the variations and the predicted values show good agreement with the values obtained from consolidation tests (Table I).

It was now intended to check up the agreement of the predicted values from the present equations with actual results of consolidation tests carried out on undisturbed samples of soil.

258

TABLE I

Compression Index obtained by Different Methods.

SOURCE	COMPRESSION INDEX VALUES $-C_c$										
	From Consclidation Test			Predicted Values							
				Sengupta's Eqn. 0.21e ₀ +0.0111 PL 0.17			Skempton's Eqn. 0.007 (<i>LL</i> —10)	Hough's Eqn. 0.31e _o -0.081			
	Void Ratio—e _o			Void Ratio—e _o				Voi	d Rat	io—e,	
	0.87	0.69	0.61	0.87	0.69	0.61		0.87	0.69	0.61	
ROORKEE INDORE DURGAPUR MADRAS BHAGALPUR DUDHWA BHOPAL	0.27 0.35 0.23 0.31 0.20 0.30 0.29	0.23 0.32 0.20 0.28 0.17 0.27 0.25	0.21 0.30 0.18 0.26 0.15 0.24 0.23	0.27 0.36 0.23 0.32 0.21 0.31 0.29	0.23 0.32 0.20 0.28 0.17 0.27 0.25	0.21 0.29 0.18 0.26 0.15 0.25 0.24	0.27 0.38 0.36 0.39 0.13 0.39 0.39 0.30	0.18	0.13	0.10	

INDIAN GEOTECHNICAL JOURNAL

Agreement of Predicted Values with Test Results

Results of site investigations were collected from various agencies dealing in soil exploration. The comparison was limited to cases in which the initial voids ratio of the samples ranged between 0.5 to 1.0. In Table II, the predicted values from the present formulae and estimated values of C_e are entered. In Figures 4 and 5, the relationships between the pair of values are shown and it can be noticed that the agreements are good.

To check the level of significance of the agreement, 't' test was carried out in the case of prediction from plastic limit according to the following formula :

$$t = \frac{\overline{x - y}}{\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} \int \frac{\sum_{t=1}^{n_x}}{\sum_{(x - \overline{x})^2 + (y - \overline{y})^2}}$$

Where,

1st] Series of random variables are $x_1, x_2, x_3, \dots, x_n$ (up to n_x terms)

2nd Series of random variables are $y_1, y_2, y_3, \dots, y_n$ (up to n_y terms)

In Table III, the various parameters in the present case are entered and the 't' value works out to 0.8.

For the given degree of freedom, the values of 't' at 1 percent and 5 percent levels of significance being approximately 2.4 and 1.7 respectively, the difference between the predicted and estimated values is found to be insignificant at both the levels in the present case ('t'=0.8). In other words, the hypothesis of agreement has been found to hold good with a very high degree of probability.

260

FIGURE 4: C_e predicted from P L versus C_e from consolidation test.

FIGURE 5: C_c predicted from L L versus C_c from consolidation test.

INDIAN GEOTECHNICAL JOURNAL

TABLE II

Application of the Present Formulae.

	COMI INE	PRESSI DEX-C	ON ¢		COMPRESSION INDEX -Ce			
SOURCE	Tested Predicted Value Value From		licted alue om	SOURCE	Tested Predicted Value Value From			
		PL	LL			PL	LL	
JOYPUR BELL by Jadavpur University 1968. TELEPHONE BHAWAN, by Progressive Sub-Soil Survey (P) Ltd. 2 ND HOOGHLY CROSSING, by Cementation Co. Ltd.	0.31 0.21 0.23 0.28 0.19 0.32 0.27 0.29 0.23 0.23 0.20 0.26 0.12 0.22 0.12 0.22 0.12 0.22 0.12 0.22 0.12 0.22 0.12 0.22 0.12 0.23 0.23 0.23 0.19 0.26 0.23 0.19 0.26 0.23 0.26 0.23 0.19 0.23 0.29 0.26 0.23 0.29 0.26 0.23 0.29 0.26 0.21 0.29 0.26 0.22 0.19 0.26 0.23 0.29 0.26 0.22 0.19 0.26 0.22 0.19 0.26 0.22 0.12 0.22 0.12 0.23 0.23 0.29 0.26 0.22 0.12 0.23 0.29 0.26 0.23 0.29 0.26 0.22 0.12 0.23 0.21 0.23 0.23 0.29 0.26 0.23 0.29 0.26 0.23 0.29 0.26 0.23 0.29 0.26 0.29 0.26 0.22 0.12 0.23 0.21 0.23 0.21 0.20 0.23 0.21 0.20 0.23 0.21 0.20 0.23 0.21 0.20 0.21 0.20 0.21 0.20 0.23 0.21 0.20 0.23 0.17 0.20 0.23 0.21 0.20 0.23 0.17 0.20 0.23 0.17 0.20 0.23 0.17 0.20 0.23 0.17 0.23 0.18 0.31 0.29 0.23 0.17 0.23 0.17 0.23 0.17 0.18 0.33 0.17 0.18 0.34 0.39 0.34 0.39 0.23 0.17 0.33 0.17 0.18 0.34 0.39 0.34 0.39 0.34 0.39 0.34 0.39 0.34 0.39 0.34 0.39 0.34 0.39	$\begin{array}{c} 0.33\\ 0.23\\\\ 0.29\\ 0.37\\ 0.22\\ 0.34\\ 0.20\\ 0.35\\ 0.27\\ 0.34\\ 0.20\\ 0.35\\ 0.27\\ 0.34\\ 0.30\\ 0.20\\ 0.34\\ 0.22\\ 0.30\\ 0.20\\ 0.24\\ 0.32\\ 0.21\\ 0.22\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.22\\ 0.36\\ 0.34\\ 0.32\\ 0.36\\ 0.34\\ 0.34\\ 0.32\\ 0.36\\ 0.34\\ 0.34\\ 0.32\\ 0.36\\ 0.34\\ 0.34\\ 0.32\\ 0.36\\ 0.34\\ 0.34\\ 0.32\\ 0.36\\ 0.34\\ 0.32\\ 0.36\\ 0.34\\ 0.34\\ 0.32\\ 0.36\\ 0.34\\ 0.33\\ 0.22\\ 0.36\\ 0.34\\ 0.34\\ 0.32\\ 0.36\\ 0.34\\ 0.33\\ 0.22\\ 0.36\\ 0.34\\ 0.34\\ 0.35\\ 0.34\\ 0.35\\ 0$		BUCKLAND BRIDGE by MSJ (ENGRS) & Co. CARSHED, HOWRAH by MSJ (Engrs) & Co. ALLOY STEEL, DURGAPUR by MSJ (Engrs) & Co. CENTRAL DRUG LABORATORY by Progressive Sub-Soil Survey (P) Ltd. BHILAI STEEL PROJECT by C, B. R, I.	0.31 0.14 0.15 0.29 0.13 0.22 0.34 0.12 0.20 0.18 0.16 0.19 0.29 0.36 0.12 0.13 0.06 0.11 0.17 0.12 0.30 0.10 0.10	0.34 0.16 0.17 0.30 0.19 0.34 0.10 0.21 0.18 0.29 0.36 0.13 0.29 0.36 0.13 0.06 0.10 0.17 0.08 0.10 0.17 0.08 0.13 0.13 0.13	0.35 0 19 0.24 0.23 0.24 0.23 0.34 0.12 0.25 0.19 0.23 0.24 0.30 0.39 0.28 0.19 0.23 0.39	

FORECASTING OF COMPRESSION INDEX

TABLE III

't' Test on predicted and estimated values of Ce.

Acknowledgement

The study was taken up as a part of the normal programme of research at the Central Building Research Institute, Roorkee and is published with the permission of the Director.

The author is thankful to Shri D. Roy for his assistance.

References

COZZOLINO, E. V. M. (1961): "Statistical Forecasting of Compression Index". 5th International Conference on Soil Mechanics & Foundation Engineering, Paris.

HOUGH, B. K. : "Basic Soil Engineering" Ronald Press Co., New York.

SENGUPTA, D. P. and JUNEJA, P. L. (1965): "Prediction of Compression Index from Soil Properties". *Indian Jnl. of Technology*, 'Vol. 3, No. 10, pp. 328-31.

SKEMPTON, A.W. (1944): "Quart. Jr. Geol. Soc." London, 100, pp. 119-35.