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Introduction

]N fine-grained soils, capillary forces hold the water in the voids andatmospheric pressure alone is insufficient to facilitate drainage. Dewater-ing and stabilization of such soils (where the coefficient of permeability
lies in the range of lO'3 to 10-5 cm/sec) cannot be effectively achieved
by the use of conventional methods of pumping. By maintaining
in the vicinity of wellpoints or wells, the hydraulic gradient is increased
under atmospheric pressure, which is about 1 kg/cm2, and water is
gradually squeezed toward the avacuated filters. In certain silty soils,
where the effective grain size is less than about 0-05 mm, stabilization by
vacuum wellpoints is so successful that pits or trenches can be excavated
without the use of sheeting or props.
Operation of Vacuum

The conditions created by the operation of a vacuum system may be
explained by Figure 1, where a wellpoint is shown with a screen and riser
pipe surrounded with a free-draining sand filter extending to within a metre
of the ground surface. The top of the hole is sealed with bentonite or fat
clay that prevents aeration. The net vacuum at the wellpoint is the
vacuum in the header pipe minus the lift or length of riser pipe. When
the vacuum is fully effective, the entrance portion of the wellpoint will be
in the capillary fringe, which is a three-phase domain, and a water-air
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FIGURE 1 : Vacuum system of drainage.
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mixture will enter the wellpoint. The two and three-phase regions
contiguous with an interface (the phreatic surface between them) ; in
addition, the upper boundary of the capillary fringe is also unknown.
Because of the well sucking mixture of air and water, the discharge will be
influenced by air-water ratio. The hydraulic situation around the wellpoint
is thus very complicated and is not amenable to rigorous analysis. It is
assumed that only water enters the well and this is reasonable as long as
the vacuum is not large.

arc

Mathematical Development

There is an important difference between the operation of conven-
tional and vacuum wells. The former are usually operated at constant
discharge and the boundary condition at the well is specified in terms of
the hydraulic gradient. In the case of vacuum wells (or wellpoints) the
objective is to maintain a constant head at the well and the flow discharge

will decrease correspondingly ; the boundary condition at the well is, there-
fore, that of constant head or drawdown. The analogous problem of
unsteady heat flow in an infinite solid bounded by a cylinder has been
solved by Smith (1937). Jacob and Lohman (1952) adapted the solution
to obtain the discharge of a flowing well.

V

Assuming a homogeneous and isotropic water bearing stratum, radial
flow toward a well is governed by the following differential equation :

d 2<f> , _1 80 = 1 80
ar2 + r 0r a dt

where 0 is a function of the head, h at time, t and at radial distance, r. For
water-table conditions the function, 0 and the parameter, a, are given by

0=i ( H 2— h2 )

aJcH'
. ..(2)

...(3).5
where, H is the initial height of piezometric surface and H' is the average
height of the water-table during the operation of the well. In the case of
vacuum wells, operating with a constant head equal to hw at the well, H'
may be taken as equal to ( 2H+hw)!3. The coefficients of permeability and
storage are £ and S respectively. For a stratum of thickness B and subjected
to artesian pressure we may write

(/> = B( H — h) ...(4)
kB ...(5)a=- ~
S

For water-table conditions, the coefficient of storage may be taken
equivalent to the specific yield of the material that is dewatered. It
range from 0-01 to 0-30.

The solution to the differential equation (Equation 1) may be written
US

Q— 2ic Bksw <J(T)

may

. . .(6)
for an artesian aquifer, and

S= irk (2H~sw) G(t ) ...(7)
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for a phreatic aquifer, where, Q is the discharge of the well. The function
G(T) is given by a complicated integral, but, for relatively long times, it may
be simplified as J 6 3
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G(T)=log, (2225 -,) ...(8)

where
at ...(9)

is the time parameter, rw, being the radius of the wellpoint.
A related and more important problem in the design of vacuum well

systems is that of determining the head at an arbitrary point in the foun-
dation. The problem is similar to that of determining the temperature
distribution in the region bounded internally by a circular cylinder. The
solution is (Carslaw and Jaeger, 1938)

> 00

f 2 [exptj-rf ) Co( v, r v)
1 * J v[/o2 (v)+JV (v)] "v

o i . . .(10)V-~VW

where r is a dimensionless distance parameter expressed as
i

• (11)
r„

Co(v, r v )=J0(v ) Y0(rv)— Yo(y) J0{rv)

Jo and Yo being the Bessel functions of the zero order and the first and
second kinds respectively. In Equation (10), V and Vw are functions of
the head h ; they may be expressed as

V — H —h
Vyi— H— hw

. ..(12)and

...(13)

...(14)

for an artesian aquifer, and as
•• (15)V=H*~h2

...(16)

for a phreatic aquifer.
Despite the importance of the problem, few numerical results have

been reported in the literature for Equation (10), largely because of its
rather complicated form. These results are, in general, not suitable for
large range of parameters of time and distance associated with dewatering
problems. Therefore, integration involved in the equation was carried out
numerically. The necessary computations were performed on a digital
computer.
Single Wellpoint

The variation in discharge with time and pattern of drawdown around
the vacuum well system can best be explained by considering a single
vacuum well (or wellpoint). Using Equations (7) and (8) we can obtain
the time discharge relationships for a wellpoint operating at a given vacuum
in a stratum of known hydraulic characteristics. For a vacuum wellpoint
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in a phreatic aquifer, this is shown in Figure 2 in terms of dimensionless
parameters of time and discharge. The numerical data for the well and theaquifer are shown in the figure.

Figure 3 shows the time—drawdown relationship around a vacuumwell. For the purpose of this figure, a dimensionless drawdown parameter,equal to V/ Vw is defined, where V and Vw are given by Equations (13)
through (16). All values herein are obtained by numerical integration of
Equation (10). With the knowledge of the constants of a given well
sod system, the time and distance parameters can be computed from Equa-
tions (9) and (11) respectively, for a given pumping time at a required
location. Generally, the specific values of these two parameters will not be
represented by any of the curves in Figure 3, and interpolation will be
needed.
Multiple Wellpoints

In practice, the problem of well groups is more important than that
of a single well. Ground water is often removed by more than one well.
Since Equation (1) is linear in the dependent variable, a linear combination
of its solutions (superposition) is also a solution. This principle of
position can be applied in a limited sense, however, because of the boundary
condition which stipulates a constant head at each well. The solutions may
be superposed for short periods of pumping during which time the constant
drawdown at a given well is not effectively changed due to interference from
the neighbouring wells.

Two systems of well groups are considered : single line array and two-
line array. In each case, the relationship between drawdown, time, well
spacing, and number of wells is shown in terms of dimensionless parameters.
Figure 4 is a plot of the drawdown parameter V/ Vw, as a function of the
time parameter, kH' t/Sr2w. In this Figure 1 is the spacing between the wells
and x is the distance between the centre of the system and the point at
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FIGURE 2 : Time-discharge relationship.
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parameter, JLDistance

FIGURE 3 : Drawdown parameter as a function of distance and time parameters.
which the drawdown is desired. The broken lines in the figure represent
the results obtained by applying the principle of superposition at relatively
long times. Since the drawdown parameter corresponding to any broken
part of the curves is more than unity, the related value of the drawdown at
a given point is, therefore, negative ; this is obviously not correct and, as
mentioned before, it is due to the fact that the principle of superposition is
not valid in this region.

The relationships for a two-line array are presented in Figure 5. The
spacing parameter in this figure is defined as the ratio of d, the spacing of
the two lines, and /, the well spacing in each line. The figure is drawn for
41 wells in each line, and similar curves may be prepared for other systems.
The region, where the principle of superposition is inapplicable is again
shown by broken lines.
Application

Since the engineer is required in many practical problems to
balance technical need against economical considerations, the issue becomes
one of “how fast” versus “how much”. Because the rate of excavation
under such conditions is usually governed by the rate at which dewater-
ing is accomplished, it is advantageous to compare several alternatives
regarding the pumping time, pump capacity, and spacing requirements.
The progress of dewatering may be critical on some jobs, and relatively
fast systems may be needed. However, “relatively fast” is a very subjective
term, and, in general, few attempts have been made in the past to quantity
time considerations, except on intuitive basis. Accordingly, the applica-tion of the results obtained above will now be presented.

For the purpose of installing an underground pipe line, an excava-
tion is required in a soil of low permeability (k=1(H cm/sec). The
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conventional methods of gravity drainage do not effectively drain the site
and vacuum wellpoints are needed. The initial height of the water-table
is 7-5 m, and the coefficient of storage, S, of the water-bearing stratum is
0-2. It is proposed to use two lines of vacuum wellpoints on each side of
excavation. The number of wellpoints in each line is 40 and they
spaced at 1'5 m along the line. The spacing between the lines is about
5 m. The effective radius of the wellpoint rw, may be assumed as 15 cm.
The net vacuum available at the wellpoint is such that the constant head hw
is about 2 m. Preliminary estimate is needed as to the depth to which
water-table can be lowered at the midpoint of the group after about a day
of pumping.

For the above data, the average height of the water-table may be
computed as (2H+hw) /3=(2 x 7-5-)-2) /3 or H=51 m. The related time
parameter is kH't/Sr2w=109 for a pumping period of 1 day. The distance
parameter, l/ rw, is l -5/0T5=10 and the spacing parameter, <///, is 3.3.
From Figure 5, the drawdown parameter may be read as 066. Thus, the
head at the midpoint of the group after a day of pumping is 4 7 m, which
means that the water-table is lowered by 2-8 m. Similar computations
may be made for other requirements and alternatives.

are

Summary
This study is concerned with ground water control in foundations by

use of vacuum wellpoints. Since sufficient theoretical analysis regarding
the application of vacuum in drainage projects is not available at the
present time, the discharge and drawdown patterns around vacuum
systems are examined in detail. Charts are presented to enable the
engineer to deduce more objective estimates which are required in the
design of such systems. Finally, a representative dewatering problem has
been included to demonstrate an application of the procedures developed.
Acknowledgements

The author wishes to express his sincere thanks to Dr. R.J. Krizek
of North-western University and Dr. G.M. Karadi of University of
Wisconsin, U.S A. for their competent advice in the preparation of the
material presented in this paper. The computations were performed at the
Vogelback Computing Centre of North-western University using a C.D.C.
6,400 computer.
Notations

The following symbols are used in this paper :

= parameter =Bk/S;
= thickness of aquifer;
= spacing between well lines;
= function of time;
= head;
= head at the well;
= initial height of water-table;
= average height of water-table;
= Bessel function of zero order and first kind;

a
B
d
G
h
hw
H
H'
Jo
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k = coefficient of permeability;
= well spacing in each line;

Q = discharge rate;
= radial distance;

JV = radius of well;
= distance parameter;

Sw = drawdown at the well;
S = coefficient of storage;
t = time;

= variable;

V, Vw = function of head;

= distance;
Y0 = Bessel function of zero order and second kind;

= time parameter;
= function of head.
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