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Introduction i
TF a hydraulic structure is built upon pervious soil, and water-Ieve.

upstream of the structure is higher than it is downstream, percolation
will occur in the underlying permeable soil. The percolation may cause
undermining of the pervious granular structure which would necessarily
be followed by the collapse of the whole structure. In addition to this,
the floor or the apron may be forced upward, owing to the upward pressure
of water seeping through the pervious soil under the structure.

r

Clibborn and Beresford (1895-97) enunciated the ‘hydraulic
gradient theory of weir design’ which formed the basis of the Bligh’s
creep theory (1910). A general theory, and a large number of individual
solutions of the conformal transformation problems as applied to weir
foundation design were published by Prof. N.N. Pavlovsky (1922, 1933).
Weaver (1932) analysed mathematically the problem of uplift pressure on
the base, for the case of a dam on homogeneous sand of infinite depth,
with the base of the dam resting on, and level with, the sand surface, with
and without a single line of sheet piling. These solutions provided the
inspiration for more generalised theoretical solutions by Khosla, Bose and
Taylor (1936). The charts given by them still form the basis of scientific
design of weir aprons in India. '

Khosla and his associates made two very important assumptions in
their solutions : (i ) the soil medium is of infinite depth and (ii ) the soil
medium is isotropic. The porous medium may be anisotropic and of
finite depth. The purpose of the present investigation is to take into
account all these factors, not accounted for in the Khosla theory, and
prepare the design curves to find the uplift pressure at any point below
the weir floor having a pile at its downstream end. The problem has been
investigated experimentally by electrical analogy, and the results have been
verified by the theoretical solution, based on the original solution given
by Pavlovsky, taking into account the anisotropy of the soil medium.The theoretical solution has been given in brief in Appendix I.
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Experimental Set-up

In the present investigation, an electrical analogy tray of size1'2 mx1'5 rax 6'4 cm was used. The bottom of the tray was made of a6'4 mm thick glass plate placed on a graph paper marked with referenceaxes and co-ordinates. The transparency of the glass sheet enabled inreading the co-ordinates of any desired point of the foundation. Thesides of the tank were made of 3‘2 mm thick and 6'4 cm high perspexstrips pasted to 2‘5 cm thick and 6-4 cm high timber strips with fevicolsolution. The tray was fixed to a rigid frame work of wood at its bottomto prevent the deflection of its bottom. Figure 1 shows diagrammaticallythe tray with the model and the circuit diagram. A step-down transfor-mer was used to supply a 20 V=50 cycles current. Two decade-resistance
boxes were connected in parallel with the alternating current. These
resistance boxes worked as a potential divider. A.D.C. galvanometer of
sensitivity 50-0-50 p A was used for null-point indication, and the current
was supplied to it through a diode. Figure 2 shows the photographs of
the complete set-up.
Model Dimensions

Figure 3 illustrates the problem under investigation. The principal
model parameters are: (/) the base width of the apron, b, ( i i ) the depth of
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FIGURE 1 : The Circuit diagram.
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FIGURE 2 : Model set-up.
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FIGURE 3 : The problem.

the downstream pile, d, ( iii ) the finite depth of the pervious medium, D
and (iv) the anisotropy ratio n^ kx/ky where kx and ky are the coefficients
of permeability in the x and y directions respectively. In all, 80 models
were tested, by suitably varying the above parameters (Punmia, 1969).

The tests were divided into four series : ( A): Isotropic soil, ( B )
anisotropic soil, kx —4 ky, (C ) anisotropic soil, kx=9 ky and (Z>) anisotro-
pic soil, kx=\6 ky. In each series, twenty models (i.e.. Aj , A2 A20) were
tested, to represent various b/ D,b/d and djD ratios. b/ D ratio was kept
as |, f , 1 and 2. d\D ratio (i.e., penetration ratio p) was kept as 0.2, 0.4,
0.6, and 0.8 to see the effect of percentage penetration of the downstream
pile on the uplift pressure, b/d ratio was varied from 0.3125 to 10. In
the case of anisotropic soil, the model dimensions were made to natural
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scale in the ^-direction while all dimensions parallel to x-axis
reduced by multiplying by the factor \Jky/kx.
Observations

The potential at any point below the floor was measured by suitablyselecting the values of Ry and R2 of the resistances of the two decaderesistance boxes so that null is obtained. Each resistance box contains 4knobs. The first knob has resistance variations from 0 to 10 ohms inthe steps of 1 ohm. The second knob has resistance variation from 0 to100 ohms in the steps of 10 ohms. The third knob has resistance variationsfrom 0 to 1000 ohms in the steps of 100 ohms. Lastely, the fourth
knob has resistance variations from 0 to 10000 ohms in the steps of 1000
ohms. Since both the boxes are connected in series, the total resistance
R is given by

were

jR=i?1+ /?2

Hence the percent potential <fi at the point of measurement is given* by

-*^rxl0°
For convenience in calculations, the resistance R2 was set up at 10

or 100 ohms and the resistance Rx was then varied by suitably moving
the appropriate knobs, till null point was indicated. For null point
indication current was fed to the galvanometer through ‘coarse’ and
‘medium’ settings and finally through the ‘fine setting’ to get the null point
accurately, and to safeguard the galvanometer against heavy deflections
in the initial settings of R^
Analysis of Results

The analysis of test results, along with the computed values with
the help of theoretical expressions (Appendix-I) have been divided into
two heads :—

(a) Influence of b/ D, bid, n (=kx/ky) and p (=d/ D) on pressure
distribution ( ( fix ) :

(i ) Variation of ( fix with x'Jb, p and bid, for fixed values of bjD
ratio.

(ii) Variation of fix with x'/d, p and b/ D ratio, for fixed values
of b/d ratio.

( Hi ) Variation of (fix with x' /b, p and b/ D ratio for fixed values
of bjd ratio.

(iv) Variation of ( fix with x' /b, b/D and b/d, for fixed values
of p.

(v) Effect of anisotropy ratio n on <fix.
(b) Influence of b/D,n and p on ( fiE and <fiD

(vi ) Influence of D/b ratio on ( fiE and ( fiD for a given value
of percent penetration of pile.

fi=
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(v/7) Influence of percent penetration of pile on <fiE and <pD with
bjd ratios.

( viii ) Variation of <fiE and <fip with b/ d ratio and anisotropy for
fixed values of b/ D ratios.

INFLUENCE of b/D. b/d, n AND p ON PRESSURE DISTRIBUTION

Figure 4 shows the variation of (fix for a typical case of bjD=\
(fixed), isotropic condition and the values of p and bid for the four
curves as follows; p=0 2 and b/d—2- 5 for the first curve; p=0'4 and b/d=
125 for the second curve; p=0- 6 and h/r/=5/6 forthe third curve and p=0'8
and b/d ^ 5/8 for the fourth curve. Kliosla’s curve for b/d=2' 5 . assuming
infinite depth of pervious medium is shown dotted, for comparison. The
Khosla curve for (fix has been computed from the following expression : J

1 cos-1 y/ l+(xjdf b_
; d - *«=2-5

7T

, V l +a2+ l _ A/ T+(2- 5)2+ 1
2 ~ 2

Vl+(2‘5)2-I
2

A

1-845where,

V l +«2-l =0.845A*= 2

horizontal distance of any point under the floor, measured from
the pile line.

Figure 5 shows the variation of <fix for the case when b/ D— l . The
four curves correspond to the values of p as 0-2, 0 4, 0-6 and 0 8. Similarly,
Figure 6 shows the pressure distribution when b/ D=2.
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FIGURE 4 : Variation of <px for various values of p and b/d.
b/ D=J (Fixed) ; Isotropic case.
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Figure 7 shows the variation of <f>x with x' /b ratio, for a typical case
of b/d=2-5 (fixed). The values of p are 0-2, 0‘4 and 0 8 and those of b/D
are i, 1 and 2 respectively for the three curves. Khosla’s line of 0, for
bid—2' 5 has been shown for comparison.

In order to study the effect of anisotropy on the pressure distribution
under the apron, various values of p, b/d and b/ D were chosen. Figure 8
shows a typical set of curves of variations of <px with x' /b and anisotropy
ratio «, for the following fixed values; p=0 4; b/ D—2 and b/d=5. The

Khosla line for 0.v when b/d=5 is shown by a dotted curve.
INFLUENCE OF b/D, b/d, n AND p ON 0£ AND <f> D

The pressures at the key points E and D depend upon bid, b/ D, p and
n. In order to see the influence of D/b ratio on 0£ and 0/> two values of

p were selected : p=0-2 and />=04. D/b ratio was varied from i to 4.
Figure 9(a) shows the variation of 0£ for p=0 2, while Figure 9(b) shows

the variation of <pD for p =0'2. Similarly, Figure 10(a) and (b) respectively

shows the variations of 0£ and <pD whenp=0 4. In each of these diagrams,

the values of n (=kx/ky) were 1, 4, 9 and 16.
Figure 11 (a) and (b) shows respectively the variations of 0£ and 0O

with the pile penetration p and anisotropy ratio n, for the typical case when
bjD=1. Similarly, Figure 12(a) and ( b ) shows respectively the variations
of <pE and <f>D with p and n, when b/ D=2.

>

FIGURE 1 : Variation of cj> x for various values of p and b/d. b/D=2-5 (Fixed) -
Isotropic case. ”
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100
T

kx = 16k ,
9

80

k y60 60
k*« l6 ky4> E kx *kv/

4,0 ; kj9ky
40 :skx = 4kj

" ^kX = ky.

40
b

W 7
o20 20

E p"o’02 *kv
7/ 777777T777^7?7^7777/

Ao 0 ij. I -U.0 2 D/b 3 4 O 2 D/b 3

( b )

FIGURE 9 (a & b) : Influence of D/ b ratio on 0E and <f>D (p=0 2).

ta )



206 INDIAN GEOTECHNICAL JOURNAL

100 100I><*= l6ky

80 kx = 4ky 80

/
/ kx = ky

60 60

0E
b 4040

Dr—**V
J7W7ffl7777P77Vp777W7.

P * 5- = 0 4
2020 /

*
o.0 I I

2 3O
.0
b

(a )

FIGURE 10 (a & b) : Influence of D/b ratio on ^ and <f>^ (p ~0'4).

80

60

$0 kx = 9 k,

k*= 4k.40

I'x'l'y.

20

x

O
0 6 0 80 2 0 4

’ *( a ) ( b )

FIGURE 11 (a & b) : Influence of p on <f>E and 0D (b/ D =l).



SEEPAGE BELOW HORIZONTAL APRON

100

*x - *6 kV',

kx *9*y

60

<t>E skx -4ky7
40

T: E
20

kx .\-D .LcLi I . : ' fty

0
0-602 04

( a )
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DESIGN CURVES

From design point of view, it is essential to have design curves for
<PE and (pD, showing variations of these with b/d ratio, for all the four
anisotropy ratios, and a series of b/ D ratio. Khosla and his associates
have given design curves for (pE and <pp assuming infinite depth (i.e.,
b/ D=0) and treating the soil to be isotropic. In the present case, b/D ratio
is finite and anisotropy of the soil has been taken into consideration.

Figure 13 gives the design curves
ation being plotted against the bid ratios. All the four cases of kxfky
ratios give rise to four curves fcr <f>E . On the same figure, Khosla curve
for cf>Ehas also been drawn. The minimum value of b/d ratio (when
b/ D=2) will be 2 when p is 100 percent. Figure 14 gives the design curves
for <f>D for all the four anisotropy ratios. Similarly, Figure 15(a) and (b)
respectively shows the design curves for <pEand $D when b/ D==l .

>

for 0£for b/D=2 (fixed), the vari-

COMPARISON WITH THE THEORETICAL RESULTS

The theoretical solution of the present case has been given in Appen-
dix I. The solution is based on the lines of the original solution given by
Pavlovsky (1923). However, the present solution has been slightly modi-fied, taking into account the anisotropy of the soil medium. It has been
found that the experimental values are in close agreement with the com-
puted values, the error being within 2 percent.
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FIGURE 17 : Variation of t with p and V n - D ir

Conclusions

From the test observations on the electrical analogy models as well
as from the theoretical computations, the following conclusions are drawn :

(1) For a given b/D ratio, the pressure at any point increases as the
percent penetration of the pile increases. However, the varia-
tion of this pressure with x' /b is larger for lower values of p.

(2) For a given blD ratio, pressuie at any point decreases as bid
ratio increases.

(3) For isotropic soil, the effect of infinite depth comes when b/D <\(or Djb > 2) approximately. However, for anisotropic case, the
effect of infinite depth comes when ~ <;

(4) For very small penetration ratios, the pressure distribution
be found even by assuming infinite depth (i.e., by using Khosla’s

T^riOXT>2Vn)-
can
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(5) The pressure at any point increases sharply with increase in
anisotropy.

(6) The pressure variation under the floor is of smaller magnitude
for a greater anisotropy ratios.

(7) For a given value of penetration ratio p, 0£ and <f> D increase as
D/ b increases.

(8) For a given Djb ratio and p, <f>E and <f> D increase with increase in
the anisotropy. Hence the usual assumption of isotropic medium
should be made with caution, as it may lead to unsafe designs.

(9) The effect of anisotropy is more pronounced at lower values of
Djb (i.e., for finite depth case).

(10) <f>£ and decrease with increasing values of bjd ratio.

211

APPENDIX I
Theoretical Solution

The theoretical solution given herein is based on theoretical solutions
by Pavlovsky (1922), taking into account the effect of anisotropy of the
soil medium. Figure 16(a) shows the problem under consideration. The
solution is obtained by performing three operations : ( 1 ) transformation of
z-plane [Figure 16 (a)] of original anisotropic medium into z-plane [Figure
16 (6)] of isotropic medium, (2) transformation of z-plane [Figure 16 (/>)] of
isotropic medium into semi-infinite /-plane [Figure 16 (c)] and (3) transfor-
mation of z-plane of rectangular field [Figure 16 (d )] into the semi-infinite
/-plane [Figure 16 (c).J

FIRST OPERATION

The given anisotropic plane is transformed into isotropic plane by
the following equations :

y
— x\/ ky/ kx = -£=-v »

. . .(la)

and yi=y
bB=Thus, 2 y/ n

7j= /̂/c>=anisotropy ratiowhere
SECOND OPERATION

To transform the isotropic z-plane into semi-infinite /-plane, the
corresponding points in the two planes are chosen as follows :

z2=id
z5=+ co ; /5=+l
z6= — oo ; /6=- l

also, due to symmetry of general layout
/x =/a=(r (say)

; **=0
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The Schwarz-Christofiel transformation formula for the present
case is

1 dtz=A +N ...(2)(r1-0Xl ('2-')Xa ('a-0X3 ('6-0 x® (O-O*8

which reduces to

t.dt
•~ (3)z= A ( l-'2) Vcr2-/2

Integrating the above expression between five specific intervals of
/(i.e., — oo </< —1; — 1<t<—a; — a<t<+cr ; -\-a<t<\ and l < /< oo),
substituting the values of co-ordinates of points 1, 2 and 7, and choosing
the ‘main dimension’ D= nj2 the above integral reduces to one single
expression :

\f I 2— <7Z ...(4)z= itanh-1 ' *o-i
a== sin(ir 4)= sin dwhere

1—a- =cos d

substituting the values of a and ax in (4), the required transformation
equation becomes

cos d^/ tanh2 z+ tanh2 d

For all points under the floor, the value of t is given by
...(5)

t= cos cly/ tanh2 Xj+tan2 d

d Vr z

2 D + tanh2
T' 1)

...(6a)

tanh2= cos 2 * D
*-

= C0STP V X 7T+ tan2 -£-• p
Vn.D 2

tanh2 —• . ..(6)

Table I and Figure 17 give the values of t for various values of p
(=4) X

^ ^ ratio. Again, from Equation (5),and

p= r4= cos d tanh2 2B + tan2 d ...( la)

v/ tanh2 + tan2 dV n

= COS -y P y/

= cos d ...( lb)

btanh2 •

(3 can be determined from Table I or
^
FigureU7

+ tan2 p ...(7)y/ a.D
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TABLE I

P” TC Xt — cos + tan2tanh22
~

2 y/ n D 2
x

P=0-2y/ n.D 0 - 60- 4 0 8
0-309017
0-342742
0-423311
0-519591
0-613232
0 696060
0-765476
0 -821391
0-865355
0 -899508
0-925382
0 944847
0-959331
0-969412
0 979379
0-983940
0-988215
0-991362
0- 993673
0 996622
0-999284
0-999845
0-999969
1-000000

0 0 0 -809022
0 814059
0-828619
0-849280
0-872768
0-896168
0-917540
0-935854
0-950909
0- 962845
0.978053
0.979303
0 985153
0-988443
0 991614
0-993858
0 995528
0 996684
0 - 997594
0 - 998731
0- 999735
0-999923
0 999997
1-000000

0-587784
0 601162
0-637227
0-686847
0-740645
0-791886
0-836860
0 874483
0-904709
0-923380
0-946607
0 960393
0 970740
0-977967
0-984164
0 - 988339
0-991486
0 -993724
0-995422
0-997562
0 999476
0-999886
0 999977
0999992

0-951064
0-952285
0:955599
0-960699
0-966511
0-972408
0-977909
0-982664
0-986689
0-989875
0 992397
0-994321
0-995795
0-996825
0-9977105
0-998310
0 998762
0-999092
0 999352
0-999658
0 9999668
0 9999936
0-9999976
0 9999995

0- 1
0-2
03
0-4
0 5
0-6
0-7»
0-8
0-9
1-0r i - i
12
1 - 3
1-4
1 -5
1-6
1-7
1 -8
2 0
2-5
3.0
3-5
40

THIRD OPERATION

The Schwarz-Christoffel transformation formula is

A.dt-» dZ ( t-tt ) ( t-h) (f- t6)

This, on integration, reduces to
MZ

ti (ts- h)-U (h-h) Sn2 . . .(8)At= MZ( te-ti )-(U-ti ) Sn* A

Choosing A= M

U (ft — ti )~ te Ui- tx )Sn2Z
•']) (/.i Ii) Srî Z • •(9)t —

( v/ (*4~0 )Z= Sir1
•••(10a )or miu-h) (f 6-o

&r’(\/ (1+q) (f i- t ) ) . . .(10)=*= , m(P+q) (1 —0
•• (106)Sn' 1 (4», m)==
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where, Sn 1 (<{>, m) is the function inverse to Jacobi’s “sinus amplitudinis”,
the modulus m being given by

m= *
f (' e~ts) f 2®+°)= V Tl +p) (1+aj ...(11)

The characteristic co-ordinates for the rectangular field are as follows :

t=tfr

t=h,
f =/8= —1.
t=t&= +1»

K is the complete elliptic integral of the first kind and K' is the
Complete complimentary elliptic integral of first kind with modulus

m'=\J 1— m2

Z=0
Z=K
Z=iK'
Z— K+iK'

PRESSURE DISTRIBUTION

The pressure distribution is given by

*-1000-f)
Hence the pressure distribution under the apron is given by

...(12)

('JJLt4&=Q ,m )
(P + «r) (l-0 ’ m )0*=lOoj 1- 1

T5® 1 . . .(13)

in which t is given by Equation (6) and can be determined for any value of *-

and p, from Table I or Figure 17.
Vn.D

For the ‘key point’ E (Figure 3), t=t3=a

<f> E = 100 j 1 1 (4 )}(l + n) (P-g)
(P+ <0 (l-a) *Sir1 .. .(14)ence “ K

Similarly, for the sides of the sheet pile :

{ 1 (4 )}d+g) ( p ± Q m
(P+ <r) (l ±0’<5̂ =100 J i- Sn- 1 . ..(15)~

K

in which

f — cos d y tanh2 y -j- tan2 d

~ cos -J - p 4 tanh2
T(/£) + J -- P
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and can be found from Table I or Figure 17. For the point D (tip of thepile), Y=id and t=0

215

00 =1OO|1 1 Srr1~~
K . . .(17)

List of Symbols

=Constant of Schwarz-Christoffel transformation
=Half base width of apron on isotropic soil

=Base width of apron (original field)

=Depth of pervious stratum

=Depth of cutoff

=Complex number ( s/ —1)

=Complete elliptic integral of first kind of modulus m
=Complete elliptic integral of first kind of modulus m

=Coefficient of permeability in ^-direction

=Coefficient of permeability in y-direction

=Modulus

— Anisotropy ratio (kx/ky)

=Penetration ratio (d/ D)

R, Rv Rt=Resistances

=Co-ordinates of original anisotropic field

=Co-ordinates of isotropic field

=HorizontaI distance of any point from the upstream end of floor

=Complex co-ordinate—
=Complex co-ordinate=Ar+iT

=Uplift pressure, expressed as percentage of the head causing
seepage

=Uplift pressure at any point at distance x from the origin
= Uplift pressure at key point E

=Uplift pressure at key point D

=Variable dimensions in t-plane

A

B

b

D

d

i
K

K'

kx
ky

m
n

P

y

x, y

xvyx

x'

z
Z

<P

(f>x

<PE
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