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Introduction

T’HE article deals with the comprehensive analysisof leakage around single
wall sheet pile cofferdams resting on two layered river bed as shown in

Figure 1. The tips of the sheet piles rest on the junction of the two layers.
With a view to cover the complete range of the factors affecting the

leakage, thirty six combinations of the non-dimensional factors such as
BID, d/ D and KJK2 have been analysed by means of the well-known
relaxation technique. Thus the cases having B/ D equal to 1, 2 and 4 are
studied, wherein for each of the values of B/ D, the value of d/ D is kept
equal to 0‘25, 0'50 and 0 75 ; and in turn for each of the values of <//Z> the
ratio KJK2 is ascribed the values of 1, 2, 4 and 10.
Description of Problem

Even though the river bed is layered each of the layers is isotropic
and homogeneous. Assuming the length of the coffer dams to be large in
comparison with their cross-sections, Equation (1) the Standard Laplace
equation would govern the seepage phenomenon :
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Where ‘0’ represents the flow potential and ‘x* and ‘y’ are the referenceaxes as shown in Figure 2.
For estimating‘Q' the leakage per metre length of the coffer damEquation (1) should be solved with respect to the following boundaryconditions (Figure 2) :
(a) The layers extend laterally up to infinity.
(b) ‘PA’ and‘QF’ being submerged under a constant head ‘H’ of

water constitute equipotential surfaces with the value of the
potential <p=H.

(c) Assuming that the space within the coffer dam being maintained
dry by pumping out all the leakage received, the surface ‘CD'
constitutes another equipotential boundary with the value of
potential 0=0.

(d ) The junctions‘ABC and‘ DEF’ between sheet piles and the river
bed layer are streamlines. Hence, the condition|~=0 should
be satisfied along the portions‘AB\‘ BC’,‘ DE’ and‘EF\ Simi-
larly at the points‘B’ and ‘E\ representing the tip of the piles,
the condition|̂=0 should prevail.

3y
(e) The x-axis coincides with the impervious surface, thus it is a

streamline along which the condition|y=0 should be satis-
fied.

(/) At any point along‘RS’ the junction between the two layers, the
flow velocity at the entrance should be equal to the flow velocity
at the exit.

The solution so obtained would furnish the distribution of ‘0’ within
the seepage medium, which can in turn be utilised for the estimate of the
leakage‘Q\

Method of Solution

Numerical analysis involving concepts of finite difference coupled
with the well-known relaxation technique was employed to solve Equation
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(1). To facilitate such computations the boundary conditions as described
below were adopted (Figure 3).

(a) LATERAL EXTENT

In any study except mathematical the infinite lateral extent of the
seepage zone cannot be and need not be undertaken. By now it is well
established that to obtain the results of acceptable accuracy, the lateral
extent of up to two times the depth of the pervious strata may be considered
to be equivalent of the infinite lateral extent. Thus it is in order to
treat the vertical line ‘PQ’ at a distance of ‘2D’ from the sheet pile as

an impervious boundary. Naturally the condition|̂=0 should be satis-dx
fied along‘PQ’ .

(b) LINE OF SYMMETRY

As is seen from Figure 2, the centre line ‘0/ of the coffer dam
happens to be a line of symmetry. Consequently the distribution of ‘0’ on

either side of this line would be identical. Due to this there is no flow
this line. Thus the vertical line ‘SR’ passing through the centre of

the coffer dam can be treated as an impervious boundary over which the

condition — =0 should be satisfied.

A

across

dx
(c) OTHER BOUNDARY CONDITIONS

The other boundary conditions remain same as already described.
The region shown in Figure 3, was covered with a square grid. The

of solution was studied to
effect of the grid size on the accuracy
a great extent for an arbitrary but similar problem and finally a grid

size of D/4 by D/4 was adopted as the common basis for the entire

investigation.
Adopting the nodal point notations as shown in Figure 4 (a) and

applying the Taylor’s expansion theorem, Equation (1) could be transform-
ed into equivalent finite difference equations in terms of the nodal <p

values as given below (Scott, 1963) :
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01+^rf^, 954+08+ 2K

With reference to Figure 3, it may be noted that Equation (2) holdslor the nodal points within the layer such as ‘M\ whereas Equation (3) isapplicable to the nodal points lying on the junction such as ‘N’ . Follow-ing scheme was adopted for obtaining the nodal ‘0’ values.
( 1 ) The nodal points on the equipotential boundary (f>=H ( viz., ‘PA’)

were ascribed an arbitrary value of 1,000.
(2) The nodal points on the equipotential boundary 0 —0 (viz., ‘CS’)

were ascribed value of zero.
(3) The conditions such as|^=0,|“=0 etc., along the imper-

vious or stream boundaries were fulfilled by creating the
^necessary mirror images such as shown in Figures 4(h) and 4(c).

(4) A set of linear algebraic equations in terms of the unknown nodal
‘0’ values could be written with the help of Equation (2) or (3).

(5) The set of equations so established were solved by applying the
standard point, line and block relaxation technique.

A typical numerical solution is presented in Figure 5.
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Computation of Leakage
In Figure 3, it may be noted that any section, either straightor curved

such as the Sections (1-1) or (2-2), spanning the stream boundaries ‘ABC’
and ‘PQRS’ intercepts half the leakage ( Q/2), the remaining half being
contributed from the region to the right of the line of symmetry. So any
such section can be employed for the numerical estimate of‘Q\

For example, consider the Section (1-1). Let the horizontal and
vertical components of the flow through an elementary area An be governed
by the gradients iXni iyn and the cross-sectional areas AXnf Ayn as shown in
Figure 6. Then :

n— N

Qll= ^ { Kx . AXn. iXn +Ky . Ayn . iyn)
n=1

n=N

Q= 2]T ( Kx . AXn . iXn+Ky . Ayn . iyn) . . .(4)
n —1

Where, Kx and Ky are the coefficients of permeability in lx' and *y' direc-
tions respectively.

As an illustration the leakage ‘Q’ for the case reproduced in Figure
5, is estimated below. The horizontal section ‘XX ’ is considered for this
purpose. For such a section‘ AXn’ the cross-sectional area normal to the
jc-axis at various nodal points becomes equal to zero. Also Ky ,
because all the nodal points are in the layer ( l\ Substituting these in
Equation (4), the Equation (5) is obtained.

n=N

Q —2KX ]T iyn . Ayn

The value of‘iy ’ at the nodal points can be obtained by means of

Equation (6), which could easily be derived with the help of the Taylor’s
expansion theorem (Scott, 1963) :

...(5)

FIGURE 6.
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__ 02n —04n .
_ ^(02«~ 04»)

2 xX>/4 ~

Substituting Equation (6) into Equation (5), Equation(7) is obtained:
n=N

2=^2 xAy«
n=i

For the end nodal points ‘ X’ and 'X' the area ‘Ayn' is given by
Z>/4 x l /2=Z>/8, whereas for the remaining nodal points it is equal to
D/4 xl=D/4. Thus:

(WOO-994) X -f (WOO-993) X (WOO-990)x- j-

+(1000-984) X +(1000-971) X -j+(1000-947) X -j

+(1000-896)x -j- +(1000-785) X^- +(1000—507) X -^]6=683-5 Kx.
As was equated arbitrarily to 1000, the coefficient 683-5 in

Equation (8) is in fact equal to 0-6835 KXH. Hence :

2=0-6835 KXH

hn .. .(6)D

...(7)

. ..(8)

...(9)

Non-Dimensional Parameters

To enhance the utility of the present investigation a pseudo-discharge
term ‘Qa ’ and certain non-dimensional parameters were introduced as
follows.

(a) Q, PSEUDO-DISCHARGE TERM

Simple Bligh’s concepts have been employed to define ‘Q0 ’ the
pseudo-discharge term. The value of (Q0 ’ is estimated by the scheme
given below.

Consider BB' the vertical cross-section below the tip of one of the
sheet piles (Figure 7). The section provides a flow area of (D—d ), having
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the coefficient of permeability of K2. If the average hydraulic gradient for
the flow through the section BB' is‘V then Equation (10) follows from the
Darcy’s law :

163

^Ka( D-d) xi

Qb/2 is also contributed from the vertical cross-section EE' making
the total Q0 for the coffer dam.

The average hydraulic gradient H’ is determined in the following

. . .(10)

manner.
According to the Bligh’s creep concepts, it may be argued that the

stream boundary‘ABC has a creep length Lx given by Equation (11) :
L^ AB+BC

On the similar basis the impervious boundary ‘PQRS’ has the creep
length L2 defined by Equation (12) :

Lt=PQ+QR+RS
The gradients of flow along these creep lengths are V and ‘i2 as

defined in Equation (13):

...(H)

. . .(12)

}h=Wi
h=H[L2

It may be argued that %’ and ‘i,’ are the gradients at the points
B and B' respectively, and further that the variation of the gradient along
BB' is linear. Thus‘f the average gradient is given by Equation (14) :

(L-+ ~)
Substituting Equation (14) in Equation (10), Equation (15) is

(a) ...(13)
{b)

B

...(14)

obtained:v
Q,=HK2(D—d )[1-+ -j-J

hence;
Ki

Q9=nKlmD-d ) [ j-+
(b) NON-DIMENSIONAL PARAMETERS

The non-dimensional parameters NQ , NQ0, and R are defined as
shown in Equation (17) :

...(15)

Let

...(16)

NQ.~K%
NQ = -gk

NQO Q•

(a)

0b) . . .(17)

(c)
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It may be noted that the parameter ‘R’ co-relates actual discharge
‘Q’ with the easily calculable pseudo-discharge Q0.

As an illustration, the value of ‘R’ for the case shown in Figure 5, is
computed below :

(i) NQ — From Equations (9) & (17a), it follows that NQ =0-6835.
(H) NQ —Following informations are obtained from Figure 5.

;(D-rf)
_§

L\=lY.^ +2 X^-=2> I ii-4x^-+12 x^-+4x^Substituting these informations in Equations (16) & (17h) :

NQO=*Q 06.
(i/7) Using the values of NQ and NQQ calculated above :

NQO 006
In the same manner the values of these parameters have been compu-

ted for all the cases and they are shown in Table I.
Nature of Parameter ‘R’

Figure 8 shows the plot of ‘ R' versus K^K^. The linear relationship
indicates the unifying character of‘ R’. It is of interest to note that NQ
could not be represented linearly. In view of this the importance of‘ R’ in
the present investigation becomes obvious.

It is of further interest to note that the slope angle 0°and the intercept
CL on the vertical axis, of various straight lines in Figure 8 when plotted
against non-dimensional factors <//Z> and Bid gave another set of straight
lines as shown in Figures 9(a) & 9(h) respectively. The ratio B/d may be

, B/ Dviewed as .
d/ D

The straight lines in Figure 9 in turn revealed following interestingcharacteristics :
(a) All the straight lines in Figure 9(a) were parallel having the slopeangle of 80-2°.
(b) The intercept Ct on the vertical axis of various straight lines inFigure 9(a) and the intercept C8 on the vertical axis of various straightlines in Figure 9(h) as well as their slopes m=tan 0 when plotted againstlogio BID gave linear relationship as shown in Figure 10(a), (b) &(c) respectively.
The method of least squares (Fair and Geyer, 1954) was employedto obtain the best fit for all the straight lines appearing in Figures8, 9 & 10. Working upon the numerical values of their slopes,

1K2n== jrr To
=5D
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TABLE I

KJK2

BID d/ D
1 2 4 10

0 846
0-418
2-020

0-986
1-668
0- 590

0-914
0 -834
1- 100

0 822
0167
4 - 930

A 0
0-25 A'Qo

R

0-776
0-306
2 540

0-706
0-153
4-610

0-640
0 061

10-460

0 908
0-612
1-480

0- 50 NQo1
R

't
0-542
0056
9-760

0 578
0 111
5- 210

0- 512
0 022

23 060

0 626
0-222
2-820

ArQ
075 NQo

R

1052
0-826
1-270

0-984
0412
2- 390

0-924
0 165
5 600

1194
1-650
0-720

ArQ
0-25 NQo

R
0-770
0-150
5 130

0-880
0 300
2940

0- 688
0-060

11*470

1092
0-600
1- 820

NQ
0-50 NQO2

R

0 664
0108
6130

0 598
0054

11 -030

0- 568
0 022

26-300

0- 776
0-216
3-590

NQ
0-75 ArQo

R*
1-068
0-814
1 -310
0-896
0*292
3070

0-996
0 407
2-450
0-776
0 146
5- 320

0 940
0163
5-780
0-692
0058

11 -850

1 224
1-626
0-750
1-122
0 -584
1*920

NQ
N0- 25 <?o
R
NQ
N0-504
R

! 0-614
0-052

11-760

0- 574
0-021

27-600

0- 668
0*104
6-410

0* 788
0* 208
3 790

NQ
0- 75 Ae0

R

V
intercepts, etc., Equation (18) the generalised equation for 1R’ representing
all the thirty-six cases could be derived:

jAo- 20 p+5- 5 log10 10-26IR=— . tann

+0-22^ 4-22+ J- J. log10 q
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Key diagram
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+0-22^ 4-74—
d

P= D’

... (18)

n=5: Bwhere, g==~
D -KI

Conclusions and Remarks

A systematic and reliable study of the leakage around various coffer
dams resting on the layered river bed was made possible by relaxation
technique. A novel non-dimensional parameter ‘ R' could be defined, so
that the leakage for all the cases is represented by a single algebraic
expression shown in Equation (18). Though this equation is not very
attractive for the immediate practical use, it certainly reveals the scientific
nature of the problem.

For higher ratio of KJK2 a random case was studied with KJK2 =100.
The results proved the validity of Equation (18). This indicates that the
Equation (18) may be true, for all the possible ratios of KJKt, even not
covered in the investigation.
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