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Introduction 

SOFT clays or silts overlying a deep-seated stratum of rock, sand or 
gravel, often require the use of long bearing piles to support engineering 

structures. The primitive methods of design were either to ignore the effect 
of surrounding ground and consider the pile as a free standing column, 
or to assume that the surrounding ground offers an infinitely rigid 
support implying that almost any load can be placed on the pile 
consistent with the strength of the material of the pile or the strength of 
the supporting soil strata or rock. The truth lies betweeu these two 
extremes. Spolford ( 1936), Cummings (1938) and Casagrande (1947) have 
reported that piles in soft clay bear loads well in excess of their Euler loads. 
Bjerrum (1957) has reported the failure of piles under axial loads inducing 
stresses much below the yield stress. The piles when extracted were seen 
to have failed in a very soft stratum. This shows that in the design of 
such piles, besides considering the supporting nature of the surrounding 
ground, the problem of buckling also has to be studied. 

An early approach to the problem of buckling of piles surrounded 
by homogeneous clay was due to Granholm (1929). Timoshenko's method 
of analysing the buckling of a bar on an elastic foundation can be used 
to obtain the crippling loads on bearing piles surrounded by homo
geneous clay. Both assume an elastic ground implying a linear 
pressure·deftection relationship. The former obtains the crippling load 
by solving the differe~tial ~quation governing the problem, whereas the 
latter adopts the Raletgh-Rttz energy method to derive the same. There is 
no trace of literature reporting the behaviour of piles under axial loads in 
layered clays. An effort is made to evolve a method of calculating the 
buc~ling r~sistance of pi.les in a two-layered system of clay, each layer 
havmg a dtfferent foundatton modulus as ~bown in Figure 1 (a). 

Energy Method for Determining Crippling Load on Pile Surrounded by 
Layered Clay 

The method is based on the following assumptions : 

(1) The pressur~-deftection relationship for clay is linear. 
{2) The found~t10n modulus of clay is constant with depth. 
(3) The .adh~ston b~t.ween the pile surface and the surrounding soil 

medium IS neghgtble. 
{4) The ends of the pile are hinged. 

• ~~dt~rr:b!d~n Civil Engineering, College of En&ineering, Os·nania University, 
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Figure 1 (b) shows a slender vertical bearing pile hinged at both ends, 
surrounded by a two-layered system of clay, and subjected to axial load 
P . . The deflected shape of the elastica can be represented by Fourier sine 
senes, 

n= oo 
~ • 711tX 

Y= ~a,.sm-1-
n= 1 

For small deflections the Joss of potential energy of the compressive 
P to a very close approximation is given by (Timoshenko), 

p Jl ( d )z p1t2 ~ 
b, T= 2 0 d: dx=4/ L..t nz a"2 

n= l 

... (1) 

force 

.. . (2) 

The energy stored during bending of the pile to the same degree of approxi
mation is given by (Tirnoshenko), 

n= oo 
EI Jl ( d

2
y ) 2 n4El ~ b, Ul = -2- dx2 dx= 4P L..t n4 a,.2 

U n= l 

... (3) 

Strain energy stored during deformation of the surrounding soil is given 
by, 

!), U2= k_J Ja.l y 2dx+i-J
1 

Y2 dx 
0 a.l 

... (4) 

Conservation of energy requires, 

b, T=6 U1+6Uz ... (5) 

Substituting the value of y from Equation (1) in Equation (4) and simplify
ing, we get, 

p 
k )I k <I G .L. ,....._ 

ToP C L AY L~.Y £ .~ 

k)l kp Of DI: PTW -< t 

6 0T TO P>1 Cl"Y 
LAYER 

t 

~ fi -

(a) V AR I -''T IO N OF FOUNDATION 
MODULUS IN Cl..t!-'1 L A'tUU 

(b) VERTICAL P ILl 5U&JICTIO 
1'0 A >UAL L o.a...o'p' -

FIGURE 1 (a & b) : Vertical pile surroanded by layered clay. 
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D 2- 2 L., 2 - 4mt 
. ) "'"'""' a,. a,. sm 2mtl1. + L., L., -7t-

n=l n m 

AU -~[~ oo( a,.211. 3.d_ 

{ 
sin (m - n) .,.oc 

m-n 
sin (m+ n)Ttoc }] 

m + n 

~I a 2 _ 

[

n=oo 

+-z ~/ - f-1-a 

{
sin (m + n)7t11. 

m + n 
sin (m - n)"l'oc 1] 

m-n 

... (6) 

Incorpor~ting the value of 6 U2 from Equation (6) in Equation (5) and 
denoting, 

p 
p= 7t2E I and 

12 

We obtain; 

+ ;7t L L Onam( sin-=: 7tO: 

n m 

sin m + n 1toc 
m +n 

n= oo 

)+! 2:( On2 1- a 

n=l 

+a,.2 sin 2n7tl1. ) _l_L L ( sin m+l1 1toc 
2 + 2 OnOm n1t 1t m+n 

sin m-n 
m-n 

n m 

. . . (7) 

For given values of oc, y and k , Equation (7) determ;nes p in terms 
of ah a2, . ..... • To find the lowest p, we have 1o select coefficients a1. a2, 
•.. so as to make Equation (7) a minimum. This requires that the partial 
derivatives of p wit~ respect to each of the coefficients must vanish, i.e., 
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~ =0 I 
oal I 

_!_!!__ =0 
I 
I 

oa2 I ..... ....... I 
_Jp_ = 0 I 

I OOn I 
... (8) 

Thus we get as many number of Equations as there a re coefficients. 
The partial derivative of p with respect to coefficient an is obtained as, 

............ J 

0
°:n =On { 2(k- -l) y 

sin 2mta } 
2 - 2ya (k - 1) - 2y+2pn2- 2n4 mt 

+ 2y (k- 1) '"' a { sin (m+n) ;coc _ sin (m - n) 1ta} =o 
1t L m m +n m-n 

m 
. .. (9) 

In Equation (9) the summation of the second term is extended over 
all values of m different from n. Thus substituting n= 1, 2, 3, ..... . in 
Equation (9), we obta in, 

a
1 

{ 2(k - l) ys~:rtoc -2yo:(k-l)-(2y+2p-2~+2y(k; l) 

sin 1to: ) ( sin 4mx. sin 2.-t.:t )+ }-o 
-~- + a3 4 - - 2-. -- .. .... -

{ 
y sin 41to: 

a2 2 (k - 1) 4r.: } 
2y(k-l\ 

2yiX (k - 1) - 2y+ 8p - 32 + 1t ' 

sin 1t1X ) ( sin Srto: 
- - 1- + aa - 5 -

sin rtx ) } 
1 +······ = 0 

( ( sin 41to: 
l al 4 

sin 2rta ) + ( sin 5rto: 
2 a2 5 

sin 1toc ) } 
- 1 - +······ = 0 

•. . (10) 

The trivial solution a1= a2= .. .... = 0 is not the one that is sought, as 
in that case there will be no buckling. For a non-trivia l solution , from 
Cramer's rule, the determinant formed by the coefficients of a1o a2,. ••••• 

must vanish, i.e., 
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2 (k-1) 
-ysin 2m.< 

27t 2y(/.(k-1)-2y+2p-2 

2Y(k - 1 )( sin 3mx 
1t 3 

2y (k - 1) ( sin 4mx. .~in 2 m x. 
~ 4 - 2 

2y (k -I) ( sin 3mx sin 'TC(J. ) 

7t \ 3 --y-
· y sin 4~a. 2 (k-1) 

4
1t -2ycc (k- l) - 2y+8p-32 

2y (k-1) ( sin 5rcx 
7t 5 

sin TCa. 

1 

2y (k - 1) ( sin 4mr. _ sin .Jrtcc ) 
7t 4 2 

2y (k -1) ( sin 5r.cc sin rccc ) 
7t -5---~-

2 (k-1) 
y sin 61ta. · 8 16 6rt -2y(/. (k-1)-2y+l p - 2 

... (11) 

For given values of(!., y and k, the solution of Equation (11) gives a set of 
values for p ; the number of values of p in the set being equal to the 
number of terms considered in the series [Equation (I)]. The lowest value 
of p in the set gives Pc· In problems of this type, the greater the number 
of terms considered in the series [Equation (1)], the more exactly the 
elasitca is defined and the more accurately the crippling load is evaluated, 
for, it then converges to a definite minimum value. 

Timoshenko's and Granholm's (I929) expressions for crippling load 
Pc in case of homogeneous clays, are obtained as follows. If k= I is 
substituted in Equation (I!), which implies that the pile is surrounded by 
a homogeneous clay of foundation modulus ~. we get, 

a1 ( - 2y+ 2p-2)= 0 ") 
a~ ( -2y+ 8p- 32)= 0 I 
a3 ( -2y+ 18p-162)= 0 I 
.............................. I 

a,.( -2y+ 2pn2-2n4)= 0 I 
•••••••• 0 •••••• 0 •••••• 0 • • 0.. •• J (12) ... 

If the series [Equation (L)) contain n terms, the solution of the set of n 
Equations (12) yield_s n val~es of p . of which OJ?-e value of p will be mini
mum _say, rth. Thts . reqUires all other coeffictents except a. in the set of 
Equattons (I2) to vamsh. Thus, in the case of homogeneous clays the 
elastica of the pile is represented by, ' 

y=a. sin 
rrcx 

- 1 ••• (31) 
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FIGURE 2 : Vertical pile surrounded by homogeneous clay. 

From the rth equation of the set of Equations (12) we get, 

( -2y+2pr2-2r4)=0 

From which, 
r'+y 

P=Pc= ,~ 

Hence, 
1t2£ J ( r«+y ) 

P~=-,2- r2 
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.. . (14) 

.. . (15) 

... (16) 

To lind the value of r, the number of half sine waves into whicb the 
pile will buckle as shown in Figure 2, we take the derivative of P, with 
respect to rand equate to zero, i.e. , 

dPe 1t2£/ ---a;-=-12-(2r-2yr3)=0 ... (17) 

From which, 

r={l=f ... (.1~) 

If oc=l is substituted in Equation (11), implying that the pile is 
surr~unded by a homogeneous clay of foundation modulus k~, we shall 
obtam, 

p ..,. 1t
2 

EI ( r 4+ky ) 
G {2 ,~ 

and, r={iky 

.. . (19) 

... (20) 
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Numerical Example 

It is required to find the crippling load for a steel pile TSHB 450 
hinged at both ends and driven through a two layered system of clay to 
bear on hard rock as shown in Figure 1. The following data is available. 

1= 14.81 mt 
lm(n· - 30~5 em~ 

E=2 x lOG kgjcm2 
cx=0.5 
~=0.0616 kgjcmz 
k = l48 

The calculations given below are carried out by means of Wang 
Electronic Calculator 320 KT Model supplied by Wang Laboratories, Inc., 
Teuksbury, U.S.A.: 

~[4 

Y-- EI n' 
0.0616 X 14.814 X 1004 = O 5 
2 ~ 106 x 3045 x 3.14' · 

Euler's crippling load= 1t;
2
E/ = 27.40 tonnes. 

As a first trial, consider only the first term in the series [Equation (l)J. 
Upon substituting the relevant values for a, y and k, Equation (11) 
reduces to, 

From which, 

2p-76.5=0 

Pc=38.250 

Now consider the first two terms in the series [Equation (1)]. Then 
Equation (11) will reduce to, 

1

2p-16.5 -62.1 /=0 

-62.1 8p-106.5 

From which the lowest value ofp=pc=5.900 

Proceeding similarly with the first three terms in the series [Equation 
(l)j, we find Equation (11) reducing to, 

2p-16.5 - 62.1 0 

-62.1 8p-106.5 -37.4 = 0 

0 -37.4 18p-236.5 

From which the lowest value of P=Pc=4.905 

Next consider the first four terms in the series [Equation 
tion (11) reduces to, 

(1)]. Equa-

1

2p- 76.5 -62.1 
-62.1 8p-106.5 

0 - 37.4 
1 +24.8 o 

0 
-37.4 

18p-236.5 
- 40 

From which the lowest value of P=Pc=4.870 

+24.8 
0 

- 40 
32p-586.5 

=0 
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1t2 El Therefore, the crippling load on the pile=4.87 x -p:- = 133.44 

tonnes. A suitable factor of safety may be adopted to arrive at the work
ing load. 

To .have an idea as to the the effect of layering, the crippling loads 
for the prle surrounded by homogeneous clays of foundation moduli ~ and 
k~ respectively are evaluated. 

Firstly, if the pile is surrounded by homogeneous clay of foundation 
modulus ~=0.0616 kgjcm2 

=0.84 

As the pile bends into an integral number of half sine waves the 
value of r is rounded off to the next higher integer 1.0. Hence, 

( 
1+0.5 ) 1t

2 El 1t
2 El Pc = 

1 
---p- = 1.5 - 12- =41.1 tonnes. 

Secondly, if the pile is surrounded by homogeneous clay of founda
tion modulus k~=9.0168 kgjcm2 

r={/148 x 0.5 =4y74 =2.94 

Rounding off r to 3.0, _ we get, 

( 
81+74 ) 1t

2 El 1t
2 El Pc= _ _ 

9
_ - =17.22 - 12- =471.80tonnes. 

Conclusions 
(1) The existing theories to estimate the crippling loads on the piles 

surrounded by homogeneous clay do not correctly predict the crippling 
loads on piles surrounded by layered clay. 

(2) Where the pile is surrounded by a two-layered system of clay, 
the method developed by the authors for calculatin~ th~ crippling loa.ds 
may be used to achieve greater degree of accuracy m estimatmg the pile 
capacity. 

(3) ln practice where the end conditions are between the ideal fixed 
and hinged end conditions, the pile will bear greater loads than those 
estimated by the theory. 

(4) Since a portion of the axial load on the pile is resisted by 
adhesion, the pile capacity based on the above analysis is conservative. 
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Notations 

The following symbols are used in this paper: 

El= flexural rigidity of the pile, 
k=ratio of the foundation moduli of top and bottom layers of 

clay, 
i=length of the pile, 

P= vertical load on the pile, 
p=ratio between the vertical load on the pile and Eulers' crippling 

load, 
Pc=crippling load on the pile, 
p,=ratio between the crippling load on the pile and Eulers' crippling 

load, 
y = deftection of the pile at depth x, 
o:=ratio of the depth of top clay layer to the total depth of pile 

embedment, 
~=foundation modulus of bottom clay layer, .-4.. , 

P. [4 
y ~--' = dimensionless factor. 

EI 1t4 
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