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Notations

a’v a2\ f f8' = Effective major, intermediate and minor principal
stresses.

crm' == Effective mean principal stress.
xm = Octahedral shear stress.

= Principal strains, axial compression and lateral expan-
sion positive.

v = Volumetric strain, expansion positive.
Ssj, Se2, Se3, Sv = Increments in principal and volumetric strains.

em = Mean principal strain.
ym == Octahedral shear strain ,

y = Distortion due to shear stresses.
U — Coefficient of distortional deformation due to shear

stress.
V = Coefficient of volumetric deformation due to normal

stress.
dE = Total energy involved during shear.
C = A coefficient.
d = Diameter of uniform sphere.
0 = Instantaneous packing angle or the inclination of xm

with the projection of major principal axis on octahed-
ral plane.

0O = Initial packing angle.
8^ S2 = Deformations of the unit cell in the vertical and hori-

zontal directions.
lv lt — Instantaneous dimensions of the unit cell in vertical

and horizontal directions.
<fi' = Effective angle of shearing resistance.

<pr' = Corrected angle of inter-particle friction (Bishop).

El > e2 > E3
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0e' = Corrected angle of inter-particle friction (Ladanyi).
0/ = Corrected angle of inter-particle friction (Rowe et al ).
0,* = Angle of inter-particle friction.
0*« = Effective angle of shearing resistance at critical voidratio state.
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Introduction
gOIL is a particulate material. In a cohesionless particulate materialthe shear strength is contributed mainly by two components, namely,the inter-particle friction and particulate structure (i.e., mode of particlepacking). In recent years considerable interest has been shown in tryingto separate these components of strength. When shear strength of a soilis used in design only single factor of safety is applied to it, rather thandifferent factors of safety to its components. The frictional componentWithin the anticipated stress range may not change significantly but the
structural component of strength may be reduced due to time dependent
deformation and deterioration of contact material resulting in flow or
crushing of the contact material, particularly in tropical soils. The factor
of safety applied to the frictional component could be less than that ap-plied to the structural component with an overall reduction in the factor
of safety. When such an analysis is adopted, estimation of these com-ponents independently is desirable in addition to the study of under-standing the mechanism of shear strength generation in granular soils.

The structural strength of a particulate material is influenced by
the degree of disorder ( randomness), rigidity of groups of particles and
porosity of the mass. It also depends on the type of soil, stress path
and stress history. The techniques of deposition or compaction of test
specimens also influence the structural strength. The structural strength
is a characteristic property of particulate materials.

Mohr-Coulomb theory Was not developed for a particulate material
to account for volume changes and group behaviour of particles ; it pre-
dicts the shear resistance between two blocks or particles of material
during shear. The model representing this theory is shown in Figure 1 (a),
in which case the measured effective angle of shearing resistance (0')
will be identical to the inter-particle friction angle ( <py.). But when a
particulate mass is sheared without volume changes 0' is not equal to
0i*. The basic disadvantage of applying this theory to a mass of dis-crete particles is that it cannot separate the structural strength from the
frictional strength. Starting with Taylor, since 1948, attempts have been
made by various authors (to mention a few Skemption & Bishop 1950,
Penman 1953, Bishop 1954, Roscoe et al 1958, Ladanyi 1960, Pooroo-shasb and Roscoe 1961 , Rowe et al 1964) to relate the strength contri-buted by friction with Coulomb 0 of no-volume change condition.

To account for the effect of volume changes Bishop (1954) suggest-ed the following expression which is identical to Mohr-Coulomb expres-sion under no-volume change condition,

•>'->'( 1+g)
sin 0/= .. .(1)ai'+a'a
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but when volume changes occur during shear, component of strength
corresponding to volume change is either subtracted or added to the
measured (a' L—o'3 ) depending upon whether the specimen expands or
contracts during shear and the value of shear strength corresponding to
Mohr-Coulomb condition of no-volume change is obtained ; in this case

0/ is not equal to 0g. The model representing this case is shown in

Figure 1 (b ). The procedure suggested by Poorooshasb and Roscoe (1961)

for separating the components of strength does not take into account the
directions of shear stress and strain for obtaining the work involved in
shear distortion, although it has the advantage of including the influ-
ence of mean principal stress on the structural component of

strength. Deviator stress involved in pure shear resistance is

Sv/Se!
I +JL_ 3Sei _

This equation of Poorooshasb and Roscoe gives values similar to

that proposed by Ladanyi (1960), who by considering isotropic and de-
viatoric stresses separately gave

-..(2)K'— CTa')=(0,
i'-O-a'«' -d.

Sv
sin <f>c' _ sin 0' Ss!

cos2 <f>o
~ cos2 0'

, 3-sin 0'
2 cos® 0'

...(3)

The method proposed by Rowe et al (1964) was derived by mini-
mizing the ratio of input and output energies during shear for a block
mechanism of failure when inter-particle friction is developed along the
inclined serrated surface of sliding. After accounting for the structural
strength they have given

«.'-<(1+1;)
"'+<*+£)

Bishop

sin <f>,= ...(4)

Coulomb Rowe

A h = o
AV = o

Ah *o
AV = O

$'= 9Sy + P

Ah *o
AV =* O

0 = 4>Ji a =
(a ) ( b ) (c )

FIGURE 1(a, b & c) : Simplified models to represent shear strength generation
in soils.



STRUCTURAL STRENGTH OF GRANULAR MATERIALS

The model representing this case is shown in Figure 1 (c). ThoughRowe (1962) considered an assembly of spherical particles, the mode offailure was essentially of the block type and the failure was implied totake place over the entire mass and not that the failure is initiated at theboundary of the specimen. When block machinism of failure occursm a dense mass of descrete particles <f> f is approximately equal to 0»Whereas in a loose mass 0, is greater than and this is believed to bedue to particle reorientation during shear, Rowe et al (1964). Theabove Equations (1) to (4) reduce to Mohr-Coulomb case for no-volumechange condition and suggest the absence of structural component ofstrength. If no structural component of strength exists at no-volumechange condition, 0 measured with effective stresses should correspondto 0(1 as in the case of two blocks sliding along a horizontal plane. Butin a prticulate material the no-volume change condition during shearis the critical void ratio state in which 0Ct> is approximately equal to <p^+6° (Bishop 1954, Rowe 1964). This suggests that even at no-volumechange condition, the structural strength exists in a particulate materialand Equations (1) to (4), therefore, enable only partial separation of
structural strength.

Of all the four basic packings of spherical particles (Graton et al1935), only hexagonal packing, which is a radially expanding rhombic
packing, exists over a wide range of porosity ranging from about 26 to
48 percent, (see Figure 2) and rest of the packings are shortlived. Porosi-ties of most sands fall within these limits. Only hexagonal and quadratic
packings (the latter is the radially expanding face-centred cubic packing)
undergo three-dimensional mode of failure whereas orthorhombic and
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FIGURE 2 : Porosity variation in laterally expanding packings of spherical

particles.
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tetragonal-spheroidal packings exhibit planar failure under triaxialconditions when a2=a3.
The theoretical relations derived by Thurston et al (1959), Rennie(1961), Rowe (1962) and Horne (1965) for face-centred cubic packinggive (o'i/o's)=2 when =0, whereas the expressions of Dantu ( 1961 ),

Rowe (1962) and Leussink et al (1963) give (<T'1/</3)=4 for rhombic
packing when =0. These effective stress ratios correspond to the
structural strength of these packings. The strength component, which
remains after substituting =0 in the gross strength expression, is the
strength contributed by the particulate structure.

The structural strength of a mass of discrete particles has been
derived by assuming the mass consisting the groups of particles forming
unit cells representing hexagonal mode of particle packing. It is also as-
sumed that the failure is initiated in the groups of particles on the peri-
phery of the specimen due to loss of two contacts by virtue of their
location. The cells located in the interior of the specimen will have 12
contacts in all. The structural strength has also been estimated by con-
sidering the energy involved in shear distortion from the strains produced

the octahedral plane assuming the material in the plastic state.
Structural Strength from the Consideration of Particulate Nature of Soil

The entire cohesionless particulate mass is assumed to consist of
uniform spherical particles forming groups of hexagonal packing. A
unit cell of this packing is considered for derivation of an expression for
structural strength.

In Figure 3 let and g2 be the deformations in the vertical and
horizontal directions and let d be the diameter of uniform spheres. Due
to these deformations the packing angle 6° (the angle between the verti-
cal and the contact line) changes accordingly. From the geometry of
packing,

on

§!=2d (cos 60—cos 0)

82=2d (sin 0—sin 0O)
...(5)
. . .(6)

where,
0 = instantaneous value of packing angle, and
0O = initial value of packing angle-constant.

The increments in and S2 are given by

A <4 = 2 d sin 0 . d 0
A &2 — 2 d cos 0 . d 0

.-(7)
...(8) K

The instantaneous dimensions in the vertical and horizontal direc-tions are

4 = 2 d cos 0

4 = 2 d sin 0
...(9)

... (10)
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- fe2 * *3
FIGURE 3 : Unit cell representing the mode of hexagonal packing.

Assuming axial compression and lateral expansion as positive, in
the case of two-dimensional deformation

In a three-dimensional mode of deformation the strains in the twoperpendicular lateral directions for an axisymmetrical case are equal ;therefore

.. .( i t )St

.ML 1= tan2 0 =2 8 3 0+ -&) .. .(12)

because § x —2 8 3=*= — §v in which volume expansion is positive. The
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theoretical strength equation (derived by the author for a laterally
expanding hexagonal packing, see Appendix) is given by

a', 1 ...(36)
tan G . tan (8—$[i.)

Substituting 0n = 0 in Equation (36) the strength contributed by
the particulate structure is

"'a

(< ) L_
\ 6a' Jr tan2 0

...(13)

Therefore,
1 ...(14)

tan2 6

Even by substituting 0^ = 0 in Rowe’s minimum energy ratio
yi

(1962)

ffex= la"! (45 +^) ...(15)

°'('+ «T,)
the structural strength

)i +

which is same as given by Equation (14). By putting 6=35.26° for the

densest state of rhombic packing in Equation (14), ^1+ -^-^ = 2.

Horne (1965) in his Figure 8, for a disordered material of spherical
particles showed effective stress ratio at maximum dilatancy rate
approximately equal to 2 for 0^ = 0. This is in confirmation with the
author’s Equation (14).

Equation (14) suggests that by subtracting the dilatancy rate from
the observed value of effective stress ratio, the stress ratio (o^'/aj')«
corresponding to the strength contributed by the frictional component is
given as

In terms of Mohr-Coulomb 0 after separating the structural component
of strength

_ K/P.-1«/<V)c+lsin ...(16) V

i.e., sin 0^ = ...(17)-0+ £)>•L <V
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Equation (17) suggests that when Mohr-Coulomb relation

sin ^ ~ 1
(CT1 1°3 ) + 1

for two blocks sliding on a plane inclined to the major principal plane atan angle of 45+0|x /2, refers to the case of AT„-consolidation when
ai >aa and S i= — f o r a particulate material. By substituting gv=0
in Equation (17), it does not reduce to Mohr-Coulomb expression
suggesting the presence of structural strength even at no-volume change
condition.
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Figure 4 shows the individual contribution to strength by the
particulate structure and the frictional resistance and their variation with
porosity for a mass of hexagonal packing in axisymmetrical triaxial
compression test. One striking feature in this figure is its resemblence
with the shapes of the experimental curves obtained by Bjerrum et al
(1951). Whereas most authors (Bishop et al 1950, Penman 1953, and
others) have obtained experimentally concave upward curves which when
extended suggest negligible variation of strength even for porosities
greater than the maximum. In fact the curves should indicate rapid
decrease of strength in the range of maximum porosity due to instability
of the particulate structure. This is suggested by the theoretical analysis.
In the range of maximum porosity, dense columner type of structure is
developed along the periphery of the sample due to contraction of
rubber membrane or disturbance in the preparation of the specimen

POPOSITY %
FIGURE 4: Strength components in a laterally expanded hexagonal packing.
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and variation of porosity exists from surface to interior of the specimen.
As a result of this concave upward curves are obtained. When loosest
specimens are prepared in very thin rubber membrane and tested under
very low cell pressure concave downward curves are obtained particularly
if the cohesionless soil is deposited in upward flowing water as adopted
by Bjerrum et al (1961). F

Structural Strength from Stresses and Strains Produced on the Octahedral
Plane

The general theory, proposed by Hoshino (1948, 1951 and 1957) for
soils on the assumption that at any point of a stressed mass the amount
of energy governs the deformation in the range from elastic state to
plastic failure as well as the final stress condition at failure, is adopted in
estimating the structural strength in axisymmetrical triaxial compression
test.

Considering an octahedral plane (Figure 5) at any point of a
stressed mass, the forces acting on the plane are mean normal stress
crm' and shear stress rm. The latter is inclined to the projection of major
principal axis at an angle 0. The three principal stresses may be
given as

Mt

= Gw -I-V 2 Tm cos 0 '

o2' = am'+ v 2 tm cos (§Tt-0)....
<V = ffm'+ V 2 Tm COS (§7T+0)

...(18)

where
i (,<*1 + aa )

Tm = s [K-O2)2 + + (ff3 ai)2]1/2

For axisymmetrical case where <r2=cr3, the directional angle 0 of
Tm becomes zero.

Therefore,
cr/ = <hn'+V2 Tm ...(19)l1 r°2 — — °m V 2 Tm--J

.2x 1

? ;
o ,1 02

^C3m
i

<33 re* 03-axis

K.

16*/ O.
FIGURE S : Octahedral plane.
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where

am ~ J (ff/+2 03')

Tm = V2/3 Oj-ffg)

The increments in principal strains in terms of am' and Tm are given
as follows assuming compressive strains positive,

1 1
l
_

i 2V d a m+ 3U d x m

^2 . _ d$3 = — d o —l- , l- . I V m

...(20)
1 1 d Tm ...

3V 2 U

where
V = coefficient of volumetric deformation due to normal

stress.
U = Coefficient of distortional deformation due to shear

strain.
The increment in the total energy per unit volume due to small

change of strains is given by

2 d( 3 ,d i CTi'+ ...(21)dE = l- r

Substituting the values from Equations (19) and (20) in Equa-
tion (21)

dE = ^-dom+ -^
With the assumption that the coefficients of deformation due to
pression and distortion are functions of corresponding energies supplied
to the mass, Hoshino (1957) showed that the increment of energy due
to pure shear when <rm' is constant is given from Equation (22) as

dE, = ^- d Tm

...(22)d Tm

com-

...(23)U

The volume changes and shear distortion in a unit mass are given
by

1 V = (1 6m)3 ...
1 — Y = (1-Ym)3 ...

...(24)

Similar to Equation (20) when <x3' is constant

dy _ dzm
1-y ~ U ...(25)
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where

v — volume change per unit volume due to normal
stress,

Y = distortion per unit, volume due to shear stress,

Cm = mean of compressive strains due to normal stresses,
and

ym = mean shear strain due to shear stresses.

For axisymmetrical case
= H^i+2 3) • 'I ...(26)

V2 -4
Ym = —3— ( i~ 3) ••• j

By re-arranging Equation (26)

Ym = -̂ -“ ...(27)
V 2

Substituting the values of Ym and from Equation (24) in Equa-
tion (27) and re-arranging

E)1 /3}J. —{1—0 —
V2

By expanding Equation (28) and eliminating the 2nd order terms

From Equations (23) and (25), the shear stress producing shear distortion
alone is given by

dE, _
dy 1— Y

Substituting the value of (1— y) from Equation (29) in Equation (30)
and re-arranging and assuming expansion of soil mass positive

dE, _ 2 (<ii—q3)
dy 3(V2-3!-U)

= C (ffj —a3)

...(28)1-1-

...(29)(1 — Y)= 1 —

Tni ...(30)

...(31)

Kwhere

c 0.667
( V2— 3 x—»)

The shear stress involved in shear distortion is due to the frictional

...(32)
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resistance which is given by Equation (31). The deviator stress associatedwith structural strength is
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K-ffs)[ 2 ]1- ...(33)3 ( V 2 3 ^-V )

The frictional resistance may be related to Mohr-Coulomb <p afterseparating the structural strength from the measured deviator stress as

sin = ...(34)£>1-0+2 o'3
Experimental Evidence

Consolidated-drained triaxial compression tests were conducted
saturated specimens of Badarpur sand according to the procedure
described by Bishop and Henkel (1957). The experiments were run in a
constant temperature room and volume changes were measured using
series of micropipettes. Evaporation of water in the micropipettes was
minimized using xylene (Barden etal 1966). These tests were conducted
under low confining pressure of 0.7 kg/cm2 to avoid crushing of particles.

In Figures 6, 7 and 8 the development of <pp with axial strain is com-pared for the three approaches represented by Equations (4), (17) and (34).
From the method suggested by Rowe et al the values of <fi after separat-
ing the structural strength are higher for looser specimens than for the
denser ones, whereas, from the two approaches presented by the author

i ' i

o ' i 4 6 7 8
AXIAL STRAIN, ,-PERCENT

FIGURE 6 : Development of inter-particle friction with strain.
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Eqn. 4

Eqn. 17

Eqn. 34

"C » 43-6°fo

O3 0-7 kg/cm2

+

40

iQ 1 5:
h- 30 o
O
5u.
-J< 20y
£
2a IO111
h-

O
43 6O I

AXIAL STRAIN, 4 ,-PERCENT

FIGURE 7: Development of inter-particle friction with strain.
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ZQ -4-41- *-oy . 30a
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o Eqn 4

Eqn 173 10
a:
2 34+ Eqn.

nc = 4I '5 °/o
03= 0 7 kg/cm2

cr
UJ IO1-

K
O

5O 2 4 6 8

AXIAL STRAIN , PERCENT

FIGURE 8 : Development of inter-particle friction with strain.
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Eqn. 4

Eqn 17

+ Eqn 34

5 40

2 30

y EH= V*"

<u
2 202
5
2 IO

°40 41 474542 43 44 46

PRE - SHEAR POROSITY, nc- P£RCENT

FIGURE 9 : Comparison of theories for the prediction of inter-particle
friction for Badaipur sand -

0, after separating the structural strength decreases with increasing poro-
sity (Figure 9). This may be due to the rotation of particles in range
of high porosities when lower fa is mobilised. The nature of variation
of fa with strain in these two approaches is very similar. The particulate
theory of rigid spherical particles gives higher value of fa than the plas-tic theory by about 3° at and beyond failure. This difference may be
due to the assumptions involved in these theories.
Conclusions

The components of strength due to inter-particle friction and parti-
culate structure have been separated by two different approaches, namely
particulate and plastic nature of material. In the former case, a laterallyexpanding hexagonal packing of spherical particles is assumed to repre-sent the behaviour of sand and the failure is assumed to start from theperiphery of the specimen tested in triaxial compression, i.e., the stabilityof a unit cell which looses two contacts by virtue of its location at theperiphery, is considered. Other investigators considered the stability ofa cell located at the centre of the specimen having in all 12 particle con-tacts and the mode of failure assumed was block-type and not a laterallyexpanding lattice. By adopting Hoshino’s generalised theory for plasticfailure of soils, structural strength has been estimated by separating theenergy involved in shear distortion. Both the theories suggest that thestructural strength as well as frictional strength decrese with increase ofporosity, unlike the variation suggested by Rowe et al. The particulatetheory of rigid spherical particles estimates higher value of inter-particlefriction than the plastic theory by about 3° at and beyond failure. Butthese theories suggest that structural strength exists even at no-volumechange condition during shear distortion. The nature of variation of
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inter-particle friction in both the theories is essentially similar. The parti-
culate theory predicts concave downward curve between strength and
porosity represented on ordinate and abscissa respectively and this is
supported by experimental evidence.

References

BARDEN, L. and KHAYATT, A. J. (1966). Increment Strain Rate Ratios and
Strength of Sand in the Triaxial Test, Geotechnique 16, No 4, pp. 338-357.

BISHOP. A. W. (1954). Correspondence on a paper by A. D. Penman,

Geotechnique 4, No. pp. 43-45.
BISHOP, A. W. and HENKEL, D. J. (1957). The Measurement of Soil Pro-

perties in Triaxial Test. (2nd ed.) Edward Arnold (Pub.) Ltd. London.
BJERRUM, L ; KRINGSTAD, S. and CUMMENEJE, O. (1961). The Shear

Strength of Fine Sand, Proc. 5th Int. Conf . Soil Mech. 1, pp. 29-37.

OANTU, P. (1961). Eiude mechnique dun milieu pulverulent forme de spheres

egles de compacite maxima, Proc.5th Int.Conf.Soil Mech. 1, pp. 61-71.

GRATON, L. C. and FRASER, H. J. (1935). Systematic Packing of Spheres

with Particular Relation to porosity and Permeability, Jnl. of Geology, 43,
8, 1, pp. 785-909.

HORNE, M. R. (1965). The Behaviour of an Assembly of Rotund, Rigid

Cohesionless Particles, Proc. Roy, Soc., A, 286, pp. 62-97.

HOSHINO, K- (1948). A Fundamental Theory of Plastic Deformation and
Breakage of Soils, Proc. 2nd Int. Conf. S. M. & F. E. 1, pp. 93-100.

HOSHINO, K . (1957). A General Theory of Mechanics of Soils, Proc. 4th Int.
Conf , Soil Mech.1, pp. 160-166.

HOSHINO, K. (1961). An Analysis of the Volume Change, Distortional Defor-
mation and Induced Pore Pressure of Soils Under Triaxial Loading, Proc.
5th Int.Conf. Soil Mech.1, pp. 151-157.

LADANYI, B. (1960). Etude des Relations Entre les Constraints et des Defor-
mations lors due Cisaillement des Soils Pulverulents, Annales des Travaux
Ottawa, Publics de Belgique, No. 3, pp. 1-30.

LEUSSINK, H. and WITTKE, W. (1963). Difference in Triaxial and Plane
Strain Shear Strength, Symposium Laboratory Shear Testing of Soils,
Ottawa, ASTM, STP 361, pp. 77-89.

PENMAN, A. D. M. (1953). Shear Characteristics of a Saturated Silt Measured
in Triaxial Compression, Geotechnique 3, pp. 312-329.

POOROOSHASB, H. B. and ROSCOE, K. H. (1961). The Correlation of the
Results of Shear Tests with Varying Degree of Dilation, Proc. 5th Int.
Conf. Soil Mech. 1, pp. 297-304.

RAMAMURTHY, T. (1966). Order-disorder Developments after Different
Strain Paths, Ph. D. Thesis,University of Birmingham.

RENNIE, B. C. (1960). On the Strength of Sand, Jnl. Austn. Math. Soc. 1 DD
71-79.

-4

w.

ROSCOE, K. H ; SCHOFIELD, A. N. and THURAIRAJAH, A. (1963).
Yielding of Clays in States Wetter than the Critical, Geotechnique 13, No. 3
pp. 211-240.



STRUCTURAL STRENGTH OF GRANULAR MATERIALS
ROWE, P W. ( 6̂2). The Stress-Dilatancy Relation for Static Equilibrium of anAssembly of Particles in Contact, Proc. Roy. Soc. A, 269, pp/ 211-240.ROWE P.W. (1964). Closure to Discusison on Stress-Dilatancy Earth Pressuresand Slopes, Proc. A.S. C.E. 90, pp. 145-180.
ROtaWk’ BARDEN L. and LEE, I. K. (1964). Energy ComponentsDuring the Triaxial Cell and Direct Shear Tests, Geotechnique 14. No 3pp. 247-261. 1 > • .
SKEMPTON, A. W. and BISHOP, A. W. (1950). The Measurement of theShear Strength of Soils, Geotechnique 2. No. 2, pp. 90-108.
TAYLOR, D. W. (1948). Fundamentals of Soil Mechanics, J. Wiley, New York.THRUSTON, C. W. and DERESIWICZ, H. (1959). Analysis of Compressionof Model of a Granular Medium, Jnl. App. Mech. 26, pp. 251-258.

371

APPENDIX

Strength of a particulate material should take into consideration thefriction at the sliding contacts, group behaviour of particles, mode ofparticle packing, number of contacts and shape characteristics of parti-cles. In the present approach the effect of the shape of particles onstrength is not included in the theoretical analysis. Hexagonal packing ofspherical particles is the only stable and predominantly occurring packingwhich can exist over a wide range of porosity. A derivation for thestrength of this packing is given in this section.
Assumptions

(1) The particles are assumed to be rigid and spherical in shape.
(2) The entire particulate mass consists of packings of the groups

of particles forming unit cells representing the basic characteri-stics of the packing.
(3) Particles in the interior of the mass have 12 particle contacts

each at the closest packing, whereas the particles at the surface
of the specimen enclosed in a rubber membrane loose some
contacts. Through these lost contacts a3 is applied to the par-
ticle through the rubber membrane. Though the mass may be
uniformly packed forming an ordered packing but at the
boundary the groups are weaker and the failure is iiltiated at
the boundary of the specimen . 1herefore failure of a group at
the surface is assumed to be the failure of the entire specimen.

(4) In the triaxial case When <T2=ct3 failure of groups takes place
by uniform movement of particles radially in the lateral direc-tions.

Derivation for the Strength of Hexagonal Packing

In Figure 10 (a), a hexagonal packing (which is a radially ex-panding rhombic packing) is shown in plan and elevation with a unit cellrepresenting a mode of packing between the maximum and minimumporosities for this group. The particles forming this group are numberedfrom 1 to 5. When this group is at the closest packing, the particles 2,3and 4 are in contact with each other but when sliding occurs due to axialloading these three particles are pushed radially outward and loose contact
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c.: P L A N

/3 d sins

ELEVATION

1- 4-J3 d - sin.e

(a )

FIGURE 10 (a and b) :
(a) Plan and elevation of a hexagonal packing.
(b) Arching of particles.

with each other and form arches as shown in Figure 10(6). This condition
exists under uniform deformation until the packing attains the maximum
porosity. During this process each particle makes totally six contacts
with the neighbouring particles. Considering one of the particles, say
particle 3, it acquires a horizontal support from its neighbouring particles
through two contacts (in a verticle plane) for its stability while sliding is
experienced at the other four contacts. This condition also exists at the
boundary of the sample. Therefore, for the stability of the group, the
horizontal force should be applied equal in magnitude and opposite in
direction to the resultant of the horizontal forces at the four sliding con-tacts. The vertical force on each particle in the horizontal layer is dis-tributed over three contacts.

Now the condition for the particle 3 to slide at a contact is
Vi 1
H1 tan (0—0(1 )

vertical force at the contact,
77x=horizontal force at the contact,

X,..(35)

where
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0=packing angle in degrees (it is the acute angle betweenthe vertical and the contact line), and
${> =friction angle at the contact.

Let V be the vertical force acting on each particle in the horizontalplane and H be the horizontal force required by each particle in thevertical plane for equilibrium. If Ax and A2 are the areas on which Vand H act respectively, then from the geometry of the packing
Ax (on which V acts) = ( y/Jd . sin 6) (1'5 d . sin 6)

= 1-5 V 3 d2 .sin2 0
A2 (on which //acts) — ( 2 d . cos 0) ( v'JV . sin 0)

= 2 \/ 3 d2 . sin 0 . cos 0
Vx = V/3 and Hx = H/4
V = ax . Ax and H = <r3' . Aa
d = diameter of particle

ax and <r3' = effective axial and radial stresses respec-tively.
Vx 4V 4 . ox' . Ax
H[ 3H 3 . . «r,' . Aa
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where

1
tan (0 — )

1cr. ...(36)
<r3' tan 0 . tan (0 —0(i )

The last expression gives the strength of a hexagonal packing. At
the closest packing when 0 = 35 26°, this expression gives the strength
of a rhombic packing provided that the particles have the freedom to slide
in the radial directions when axial stress is applied. The author’s work
(Ramamurthy 1966) has indicated that the particles except in the closest
state generally have freedom to slide in radial directions and the mode
of failure is essentially by expansion of lattice radially in the lateral
directions.




