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Introduction
TN a previous article^) the finite element method of analysis was presented
1 for determining stress and deformation patterns developed due to the
self-weight of an earthen dam. Besides various static loads, there may
also be dynamic loads due to natural causes such as earthquake shocks.

Conventionally the effects of such a shock would be determined by
following a design procedure which may be termed as pseudo-static
analysis. For example in the pseudo-static analysis of the finite element
idealization shown in Figure 1, the quake shock would be treated as
equivalent static load defined by an appropriate value of the seismic
coefficient‘K’ (Figure 2).

In case of the routine design procedures, the pseudo-static analysis
would involve the stability checking of the potential sliding mass with the
seismic forces imposed upon it as shown in Figure 3. This kind of design
procedure has, however, been shown to be too inadequate to indicate the
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true response of the earthen dams subjected to seismic shocks(2). Thismeans pseudo-static finite element method of analysis may also prove tobe incapable of predicting the true seismic response. Thus a method thattakes into account the dynamic nature of the seismic forces may benecessary towards rational aseismic design of earthen dams.

The finite element dynamic analysis may be carried out by following
the standard procedure employed in the dynamic analysis of a lumped
structural system. In the present article the method is discussed at
length with reference to the development of the dynamic displacements of
the finite element idealization shown in Figure 4 (a). In the analysis it
will be assumed that the base of the system is shaken by an earthquake
shock of the type shown in Figure 4 (6). In reality the quake shock would
never be so uniform. On the contrary it would be quite random. However
the method that would be demonstrated does not take advantage of the
uniformity of the selected shock, hence it is justified to use the same for
the sake of simplicity.

mass

While discussing the dynamic analysis the damping offered by the
dam is ignored. Actually the damping is one of the most important
factors governing the true dynamic response ; but its consideration in the
present article is considered to be beyond the scope due to following
reasons

(a) The nature of damping in an earthen mass is a very complex
phenomenon. To include it in the analysis some kind of
oversimplification would be necessary. To appreciate the
limitations of the proposed oversimplification the factors which
govern the damping should be discussed at length beforehand.
This in itself would justify a full length independent article.

(b) Once the oversimplification is accepted the inclusion of damping
involves only additional computational efforts. As the purpose
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of the present article is to discuss the concepts behind the
dynamic analysis, the ommission of this extra computation
would simplify the presentation.

Natural Vibration Character
The idealised system shown in Figure 4 (a ) may be considered to be

a lumped mass system with one-third mass of each element concentrated
at their nodal points, so that the masses are interconnected through
massless triangular elements with specific stiffness character [/f] (Figure 5).

With the base nodal points 1, 2 and 3 completely restrained, the
masses mv m2 and m3 cannot vibrate under the influence of any dynamic
load. The masses m4 , a m6 are, however, free to vibrate both in ‘x’
as well as the '/ direction. The system thus has six degree of freedom
for vibration.

Just as a pendulum would indefinitely go on swinging, once set into
motion, in absence of damping, the idealised system will also vibrate
indefinitely in its own plane once set into motion. As the system possesses
six degree of freedom for vibration, it can vibrate indefinitely with six
different natural frequencies having correspondingly six different modes
of vibration(3). These frequencies and the modes of vibration are the
natural inherent character of the system. Their knowledge helps in
carrying out the dynamic analysis.
Eigen Value Problem

Applying the principles of dynamics to masses m4, m5 and m6 , it
follows that the natural vibration character of the system will be
represented by Equation (1) in matrix form

[ m] [r] + [ K\ [r] = 0 . . .(1)
Where various matrices in the equation have the following meaning:—
(a ) [r]—Nodal displacement matrix :

The nodal displacement matrix is given by Equation (2).
rXi 1
rT4

r*5

[ r ] = '>5 ...(2)

I r y J

FIGURE 5.
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(b) [f ]— Nodal acceleration matrix :
The nodal acceleration matrix is given by Equation (3).r 'i

155

**602 -13)[if] = -r^r [r] =312 ^’5

ix

l J
( c ) [m]— Nodal mass matrix :

The mass of various triangular elements is assumed to be lumped
at their nodal points. Each element has a mass of

2 xf x 40x 10 = 40-78 T.9- 81
One-third of this mass is lumped at each nodes so :

mx = m3 = m6 = ^ x 40- 78 = 1359 T.
m2 = m4 = m5 — 3 x|x 40-78 = 13- 59 x 3 T.

As the base nodal points 1, 2 and 3 are completely restrained, only
/«4, mb and me are involved in vibration. So the nodal mass matrix is the
diagonal matrix as shown in Equation (4).

f 3
'I

I ...(4)[m] = 13- 59 x 3
3

1
1

( d ) [A-]—Stiffness matrix :
The structural stiffness matrix had been derived in an earlier

article( x ) and it is as shown in Equation (5).
f 0601 0000 0-66 0000 -133 — 2671

0000 2434 0000 0766 - 67 -800

-66 0000 0601 0000 -133 267
[K ] - 2-68 x -(5)0000 766 0000 2434 67 — 800

-133 -67 -133 67 267 000

L — 267 -800 267 -800 000 1600 J
Let r = a sin wt -(6)

where,
a = half amplitude of vibration and
w = the circular frequency of vibration.
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Then :
If = —aw2 sin wt = — w2 .r

Substituting Equation (7) in Equation (1) and putting w2 = B,
Equation (8) is obtained.

...(7)

.. .(8)B [m\ [r] = [ K] [r]

Equation (8) represents an Eigen value or characteristics value
Its solution would establish the normal vibrationproblem for the system,

character of the idealised system.
Solution of Eigen Value Problem

Substituting the values of [m] and [ K ] from Equations (4) and (5)
into Equation (8) and rearranging the terms, Equation (9) is obtained

[ L] [r] = 0
Where [ L] is given in Table T.

...(9)

TABLE I

-4-34 —8-74 —17 6 'l00395-B

-4-40 -52650-30-160-0 —B
-874 17-6395 00-4-34 —B[L} =

4-40 -52-616005030
-B

13 2 5260 0-26-2 -13-2 —26- 2
-B

-52.6 —157-8 52-6 —1578 315-6-B J
0

As may be noted, Equation (9) is representing a set of six homo-geneous equations. For its non-trivial solution the characteristic
determinant | L | should be equal to zero. The nature of matrix [ L ] in
Table I clearly indicates that the above condition leads to a polynomial
in *2T of six degree as shown by Equation (10).

( B-BL) ( B-B2 ) ( B-Ba ) ( B-Bt ) ( B-B5 ) ( B-B,) = 0
Thus there are six values of ‘5’ such as Blt B2...B6 , satisfying thecondition for non-trivial solution. These values of ‘B’ give six values offrequencies such as wlt w2

Substituting each of the values of ‘B’ in Equation (9), six sets eachhaving six homogeneous equations would be obtained as shown inEquation (11).

.. .(10)

w6 etc.

[ LL] M = [U ] [r ] = [L6] [r] = 0
The solution of any of the sets say [.U ] [r] = 0 gives rise to therelative nodal displacements. Keeping one of the nodal displacements to

.. .(11)
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be unity the values of other nodal displacements are obtained. Such set
of six nodal displacements constitutes the nth mode shape character and
it may be denoted by [0„]. This mode shape will have frequency of
vibration of

157

The complete solution of Equation (11) would thus give six mode
shapes [0J, [</> 2] [06] corresponding to six frequencies of vibration
Wi, w2 w6.

Numerical Solution for Mode Shapes and Frequencies

The method of matrix iteration coupled with the condition of the
mutual orthogonality of the mode shapes would be employed for the
numerical solution of the eigen value problem. The method presented
here in essence follows the procedure adopted by Hurty and Rubunstein(3).

As the stiffness character has been employed in the derivation of the
eigen value problem first the mode having highest value of ‘w’ will get
established, ie., in the present case the 6th mode would get established
first.

(a) SIXTH MODE

Equation (9) is rearranged in a form suitable for matrix iteration
process as shown in Equation (12). The iteration is demonstrated in
Table II. It is assumed that 7th step gives sufficiently accurate result. The
6th mode character is thus as shown in Equation (13).

-8-74 -17-61
-4-40 -526

f 39-5 0 -4-34 0

0 160 0 50-3
176-8-74-4-34 0 39-5 0

M .-(12)B [r] = 4 40 -52-650-3 0 1600

-26- 2 -13-2 -26 2 13*2

-52-6 —157-8 52 6 -157 8

52-60 0

315.60

'-0-04867 '

-0-26890

004867
-0-26890

B6 = 405-6
we = 20 14 rad/sec.

m = ...(13)

0

L 1-00000 j
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TABLE II
Step 1 S

r -\T 6 i
I -52 - 6

f -0 05577 ~|
-0-1666

0-05577

f 0 1
0

17 - 60 = 315-6 XB X
-0-1666-52-60

000

L 1(_ 315-6 JL I J
Step 2

f -0 0536 "1f —2005'

-87-63
20-05

-87-63

l'-0 055771
-01666

005577
-0-2343

0-0536
= 374 X -0- 2343B x — 0-1666

000

^ 374 JJ

Step 3

f-0- 05049'

-0-2577
0-05049

' -19- 95'

-101 90
r-0 0536 'I

— 0- 2343
19950 0536

= 395- 2 X -0-2577B X —101 90-0- 2343
000

1L 395- 20JJL 1

Step 4
'-004925'

-0-2656

0- 04925

* -1981'

-106- 80

' — 0 05049'

0- 2577

-0-05049 19- 81
= 402- 3 xB X —0- 2656— 106-80—0 25 / 7

000

l 1L 402-3 Jl 1
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TABLE II (Contd.)
Step 5

'-004925 1
-0- 2656

004925

f -19- 76'

— 108- 40
f -O-04884'i

-0-2680
0 0488419 - 76

B x = 404 - 6 x-0 - 2656 —108-40 -0-2680
0 0 0

l 404-60JJ 1
Step 6

'-0-04884'I
-0- 2680

0- 04884

f -19-741 f
_o-04871

-0-2689
0-04871

-109-00

19- 74
= 405-3 xB x -109-00 -0- 2689-0-2680

0 00

405- 30
Step 7

f — 0*04867" i
0-2689
004867

f -19-741f -0048711 —10910-0- 2689
19- 740 04871

= 405- 6 xB X -0-2689-10910-0- 2689
000
1405-60L 1 J

(b) ORTHOGONALITY OF MODE SHAPES

Imagine a six-dimensional space with six mutually perpendicular
axes in such a manner that the six nodal displacements of various mode
shapes are represented one on each axis. Due to this the mode shape will
be a mode vector in that space. The orthogonality of mode shapes mean
that the corresponding modal vectors are mutually orthogonal. The proof
is as follows :

Let suffix ‘p’ and ‘q' denote the characteristics of pth and q\h mode
of vibration According to Equation (8), the nodal forces during the
extreme positions of the amplitude of the nodal masses are given by
Equation (14)

V

>
vvj [m] [<pv] ...(14)
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If the forces in the pth mode are given the virtual displacement of
the 17th mode then the virtual work is same as would be obtained by
giving the virtual displacement of the pth mode to the nodal forces in the
#th mode(4).

Hence :

A

w2 [ <p/ [ m} [0„] = ^ [ <pt]
P 9

...(15)

be prow l that forBy using the relationship in Equation (8) it can
the condition wv p wQ, Equation (15) is valid only if :

[ <t> f [m ] WJ =
m = 0°10 j

...(16)

Substitution of Equation (16) in Equation (15) proves \ tat virtual
works are zero. Hence the mode shapes are orthogonal i the sense
described.

(c) USE OF THE CONDITION OF ORTHOGONALIT

Applying the condition of orthogonality expressed by E jation (16)

to 5th and 6th mode :

[ <pf [m] [&] = 0 -(17)

Substituting [$6] and [m] from Equations (13) and (4) inf Equation
(17), the displacements in the 5th mode would satisfy Equatioj 18).

rH = 0146 rXl + 0 8067 ry4 - 0146 rx& + 0'8067 ry£.V

Substitution of Equation (18) in Equation (12) will give the matrix
equation valid for the 5th mode shape (Table III). Its comparison with
Equation (12) indicates that one of the columns has been swept away.
This makes iteration process for the 5th mode relatively more easy. In
fact while establishing further lower mode shapes at each stage the
condition of orthogonality would sweep out one additional column at each
successive modes (as may be noted in Table III), making computational
work more and more easier.

...(18)

TABLE III

5th mode
36-9 —14-2 —1-77 —14-2 -8’74 0'

-7-68 117-6 7-68 7-87 -4-40 0

-1-77 14-2 36-9 14-2 — 8 74 0
-7-68 7-87 7-68 117-6 4-40 0

-26-2 -13-2 -26-20 13*2 52-60 0

, -6-60 96-8 6-60 96-8 0 0
_

<M
'
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TABLE III ( Contd.)
4th mode

Substituting [0„]r[m] [04] = [&]r[m] [04] ^ 0

ryt = 0-168 % “ ryt ~ 0-168

f 34- 5 0 0 60 0 -8-74 0'

-6- 36 109-7 6-36 0 -4 40 0

0-60 0 34- 5 0 — 8 - 74 0B [r ] = w
12- 1 -109-7 -12-1 0 4-40 0_ 24 -26-4 -28-4 0 52-60 0

9-70 0 -9- 70 0 0 °J
3rd mode

mTw wy = °
rn = -0-0009 rXi -0-1689 rXt + 0-248 r^ .

0-6 0 -8- 74 01

[0ef [«] [0a] =

' 34-5 0

-6- 5 0 — 12 2 0 22-80 0

34-5 0 -8- 74 00-6 0 MB [/•] =
6-5 0 -22-80 012- 2 0

— 24 0 — 24 0 46-10 0

°J9-7 0 -9-70 0 0

2nd mode
mT M [02] = mr im\m = o

rX f. = 0-662 rX i + 0 622 rx&
.

f 28- 7 0 -5-2 0 0 01
8-6 0 29 0 0 0

-5- 2 0 28- 7 0 0 0

—2-9 0 — 8-6 0 0 0

6 - 5 0 6-5 0 0 0

9- 7 0 -97 0 0 Cj

!

i
l> JB [r] =>
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1st mode
[9VlrM [<t>1] VthV N = o

r*t = w
f 235 0 0 0 0 0

115 0 0 0 0 0

23-5 0 0 0 0 0 [r]

— 11*5 0 0 0 0 0

13-0 0 0 0 0 0 '

0 0 0 0 0 0 J

>

B [r ) = 1

(d) COMPARISON OF MODE CHARACTERISTICS

Table III indicates the complete solution of the eigen value problem.
The solution has been obtained by solving the matrix equations presented
in Table III . The mode shapes are shown graphically in Figure 6. It
may be seen that both symmetrical as well as anti-symmetrical modes of
vibrations are excited. For example 1st, 3rd and 4th modes are anti-
symmetrical, whereas 2nd, 5th and 6th modes are symmetrical.

TABLE IV

6th mode5th mode4th mode3rd mode2nd modeMode 1st mode

20 - 14114110-577 8615 8224-848w

-0-04867-0 20430-05661- 0000 —0-32701 0000rx i
J-0-268900 - 659010J000 4894 0T682 0 4678'>4

0-2043 0-048671-0000 00566—1-0000 —0-3270rx8

—0- 4894 01682 0 6590—0- 4678 —1-0000 -0- 26890>>5

0-5531 0-0000 1-0000 0-0000—0 4590 0.00000rX(s
0-0000 0- 5723 0 0000 0 0000 1 0000 1 ooooo0-6

Note : ‘w’ are in radians/sec.
Nodal Dynamics

As shown in Figure 4(b ), the base of the idealized system is subjecjed
to quake acceleration of f( t ) x02 g, where f( t ) is a function of time describ-
ing the time variation of the intensity of the shock. It is stated that(5)
effective force induced in a structure by an earthquake acceleration of
/(t) x0-2 g applied at the base is equal to the lumped mass at each nodal

<
Jr
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point multiplied by the earthquake acceleration and it acts in the direction
opposite to it.

The nodal dynamics would thus be described by Equation (19).
[m] [*]+[*] M=-/(/)• [m] [a] . .(19)

Where ~[a] is the base acceleration matrix given by Equation (20).
r o.2g i

V

0

0-2 g
M= . . (20)

0

0-2 g

L o j

Equation (19) represents a set of six differential equations, whosesimultaneous or coupled solution would be extremely difficult. Theseequations can, however, be decoupled by utilising the natural vibrationcharacter shown in Table IV. The derivation is given below :
Actual mode of vibration excited in the system by the quake shockjnay be viewed as weighted sum of the fundamental modes of vibration

)
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shown in Table IV. So the dynamic nodal displacements may be represen-
ted by Equation (21) >...(21)[r ]=M<Pi]+W 2]+-*M*]

Where Rx, R1... Re etc., are mode superposition factors.
Equation (21) may be rewritten as Equation (22).
Where .. .(22)[rWflW

[0]=[0i> 02-0«]

r *i i

[ R]=

l j
Substituting Equation (22) in Equation (19) :

[m\ [ <f> ] [/?]+ [ K] [0] [ R]=- f( t )M [a]

Premultiplying Equation (23) by [ <f>]T

mT [ m] [0][/?]+ [0]V][0][/?]=-/(/) .[0]rim] [a]

Various matrices in Equation (24) can be simplified as shown below :

(0 [0]rM [0] :
Utilising the orthogonality of the mode shapes [ <p]T [m] [0] can be

proved to be a diagonal matrix shown by Equation (25).

(»4 r\+ »V* )ixi ft

...(23)

...(24)

...(25)

<w<+
6, etc., applied outside the bracket indicate the mode

i

where suffix 1
numbers.

As already pointed out the mode shapes represent only the relative
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displacements, hence a fresh selection ( i.e., one different form those shown
in Table IV) of their values may be so made that :

(m*rl 4-...WV-S X=....(w4 r2 +...m6 rl )e=lx\ yo xi >e
With the above substitution in Equation (25) the matrix [0] T [m] [0]is transformed into a unit diagonal matrix.

(») [0]r[tf ][0] :
Using Equation (8) and the unit diagonal character of the matrix

VP )1 [m] [0] it can be shown that [ <£> ]T [ K ] [01 is also a diagonal matrix
shown by Equation (27)

)
A,

...(26)

\

wj

w\

=[*V2] ...(27)W ]Tim]=

K

\

m VP )
[0] was represented by [04 02...06]. Now with the condition laid

down in Equation (26) [0] is transformed into [0] where [0]=[0!02 - - - 06]-
The numerical character of [0] is shown in Table V. The [0] is called the
normalised mode shapes.

TABLE V

05 004030i 02 «

—002820-1064 —0 0516 0 0049 0017700975

0 0179 010830-0477 0-0739 0 0910 C-0975
00975 —0 1064 -0-0516 0 0049 0 0282 —OOI 77

—0-0477 00179 —0-0739 —0 1083 0-0910 0 0975
0 0539 0 0000 0 -1575 —0-3571 0 0000 0 0000
0-0000 0 0609 00000 0 0000 01380 -0 1209
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Substitution of the resultant matrices as described above intoEquation (24) transforms the set of coupled equations into a set of decoup-led equations as shown below :

S.
/

m+M [R]=-/(t ) .mTMM ...(28)

Pseudo-Static Analysis

As mentioned in the introduction of the article, the pseudo-static
analysis of the system can be made by the standard finite element method
with reference to the load conditions shown in Figure 2. The value of

seismic coefficient in that case would be 0 2.
The same analysis can also be done more conveniently in the present

case by using Equation (28). For example substitution of [ R 1 = 0 and
f ( t ) = ±1 into Equation (28) leads to Equation (29) valid for the pseudo-
static condition

Denoting R, to represent the value of ‘A’in the pseudo-static condi-
tion, is given by Equation (30).

...(29)

W\T [m) [ a\ ...(30)[ R*]=T K]

Various matrices on the right hand side of Equation (30) have already
been established so the values of Rs corresponding to various modes are
obtained as shown in Table VI.

It may be noted that due to the convention that the forces and dis-
placements are positive in the negative directions of the axes, the substitu-
tion of / (t)= +l gives the reservoir full condition whereas / (;)= —1 gives
the sudden drawdown condition (Table VI).

TABLE VI

u
J

*>

Condition of the
reservoir Rs

Full -0-725 0 0 066 0-078 0 0
Sudden
drawdown

0-725 0 —0066 —0-078 0 0

*L,Rs is also called participation factor. It indicates the weightage withwhich the normalised mode shapes should be superposed so as to obtain the
displacement configuration under the pseudo-static loads. Using Equation
(22) and normalised mode character from Table V, the pseudo-static dis-placements are estimated as shown in Table VII.
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TABLE VII

Nodal point Reservoir full condition Sudden drawdown condition

rx rv rx rv

1 0 0 0 0
2 0 0 0 0

3 0 0 0 0

—0 02124 —00737 0 0737 00212

0 073700212 —0 02125 —C -0737

0-0000 00566 0-0000—C-05666

Note : All the displacements are in metres .

Dynamic Analysis

Let the dynamic value of lR' be given by Equation (31).
R„— Dn X RSn ...(31)

where,
Rn=Dynamic value of R for the nth mode of vibration and it is

function of / (!)•

Rs =Pseudo-static value of R for the nth mode, corresponding to
the reservoir full condition. It is a constant as shown in
Table VI.

Dn=A proportionality constant called as dynamic load factor and
it is also function offit ).

Substitution of Equation (31) in the nth mode expression of Equation
(28), it follows that :

V

D„ x RSn+wn x D n x R =-/(0 • [$n]
T

[m ] [a]

-fit ) . [0„]r[w] [a ]D„ + H- 2 xD„ = . .(32)
Rsn\

[ fn]T [tri\ [a]*
But Rs =— 2

W

£>n +W*
t . Dn = wl . / (/) . . . (33;
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It can be shown (4) that the solution of Equation (33) with the
initial condition of the dam being at rest,ri.e., for time 1=0, Dn —0 and
i>„=0.

T

\ma
. sin wn(T—t ) . dt ...(34)

Where Dnj, is the value of the dynamic factor at time t=T.
Equation (34) is suitable only if /(?) is an integrable function. As

already pointed out the quake load would be random, so the equivalent
expression for such condition is given by Equation (35)(3).

T

0

...(35)A t - sin wn(T — t )Dnjr

c~~r Equation (35) would now be solved for various mode shapes. It
[may, however, be noted from Table VI that RSt , RSs and RSg are equal to

zero so the dynamic values Rv R5, and R6 for these modes will be zero
TIME. IN SE.CONDS

TIME IN SECONDS
0 150 IS

ul

2 010 1y 0 10
£
5 005* 0 05
H

00 h

S
Ui

5-o -os
i-0 '1 0
O -015

3 *0 05

f! -0 10
5 -0 15

u

L?

320 J
(C) VERTICAL DISPLACEMENTS

OF NODAL POINT 4(01 HORIZONTAL DISPLACEMENTS
OF NODAL POINTS 4 AND 5
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2
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FIGURE 7.
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irrespective of the values of the corresponding dynamic load factors. Thismeans the horizontal quake load does not excite those symmetrical modes.
Hence Equation (35) need be solved for the 1st, 3rd and the 4th modes.
The computations are shown in Table VIII.

The interval At is choosen as J sec. This interval touches thevalues of /(/) as 1, 0 and — 1 in succession. For more accurate results

TABLE VIII

169
)

T D x D3 D4 *3 y?4

0-000 0-0000000 0-000 0-0000 0-000

0-000ooco 0-000 0-000 0000i 0 000

1-280 —0-250 0-055 01000- 345 C-8 I8i
0-632 —0-412 0 060 00490-568 0- 907» —2- 248 —0041 -0-175-0 176C-243 —0-628i

—0-136—1-742 —0- 1060- 123—0170 —1-604

—0 022 0-2082-667 0128—0-335-0-176l
0-23800813-056 0-0901-233—0- 124l

—0-1900-0580- 265—2-4350-886-0-3651 —0 332—4-259 -00170-345—0-476 —0-2501*
0 126—0 0231-609 0-057—0- 346—0078U —0-008 0-3945054 —0-250—0 1340-3441* —0 030—0041—0- 390 —0-222( —0- 6200- 306

-0-409—0037—5-247 —0 119—0-5540164If
—0072—0054—0-924 —0-218—0-8220 300li

0-3740097—0-2354- 7911- 4660-3241 }

—0 008 01572012 0075—0-124-01032

-0-296—0098—3- 797 0-355—0-489 —1-4802i
—0054—2- 610 —02040-262—0-813—0 3612i

2-508 0-032 019600840- 480—0-1152|
2-571 0118 0053 0-200—0163 0-6372*) —1-238 0 - 0152t 0104 —0-100—0143 0-227-M —1-9042* 0-263 0- 323 —0191 0021 —9149
0-2970 131 —0-412 0-0092f 0- 568 0 023

0-761—0-885 —0-241 —00580- 3323 0 059

Note : ‘7” represents time elapsjd in seconds.
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TABLE IX

Nodal points

654T

>rvfxrvrxrvrx

0 00000 00000-030000000o-oooo0- 00000
0 0000000000-0000 0 00000 000000000i
0 0000—0-0400—0 0029—0-02630-0029—0 0263i
0 0000-0-0304O- OiOO—0 0431—0-0100—0-0431* 000000 04670 0304—0 0161—0-0304—0 0161i
0-00000-03850-016600168—0-016600168t
00000—0070900146 —0-02710-027100146i
o-oooo006730-0058 —003610036100058i
0-00000 0917000330-0218—0-00330-02181
0-00000134400329 0 0205—0 020500329li
0-0000—0-04550-0074 —001440-01440-0074l i
o-oooo—01550—00301—0-021700301—00217
0 0000—00078—0-0197 0-0253—002534 —0-0197
O - OOOO013390-1049—00339—0-1049H —0-0339

)0-0000—00189 0-0224 0-0054—0-02244 —00189
00000—0-0261 —0-1448—0-0372—0-0261 0 0372H
o-oooo000852 —0 0201 —0-053400085 00201

2i 0 0000—0-0206 00347 0-0206 0-109400347

2i 0-027400274 —0-0134 00134 O - OOOO00785

21 0-0066 00277 0-0066 —00277 —0 0604 0-0000
2* 003130-0096 00096 —00313 —00568 0-0000
2| 00085 —0-0049 00085 0-0049 0 0435 00000

2i —0-0204 —0-0238 —0-0204 00238 0-0462 0 0000 (

21 —0-0406 —00168 —0-0406 00168 —C - 0288 00000
3 —0 0202 —0 0096 —00202 0-0096 —00432 0 0000

Note : All the displacements are in metres.
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the interval At should be much smaller so as to include the intermediatecharacter of the function /(t). As the demonstration of the concepts isthe main aim of the present article the laborious calculations involvingsmaller values of At have not been undertaken. For the same reasonthe calculations have been made for the first three seconds only. Actuallythe calculations should be made for the entire period during which thequake shock is felt.
Dynamic Displacements

With the help of the values of ‘ R’ in Table VIII and the normalisedmode shapes given in Table V, the dynamic displacements are calculatedas shown in Table IX. Figure 7 shows the comparison between the
pseudo static and dynamic displacements.
Dynamic Stresses

The dynamic stresses may be calculated with the help of the dynamic
displacements (Table IX) by following the method demonstrated in
reference (1). Due to small number of nodal points the stress calculations
would not serve any practical purpose, hence the stress calculations are
omitted in the present article.
Conclusion and Remarks

The dynamic horizontal displacements of nodal points 4 and 5 are
lower whereas that of the nodal point 6 are higher than their pseudo-
static counterparts. It is thus likely that in the upper regions of the dam
the pseudo-static approach may be inadequate whereas for the lower
regions of the dam the same approach may be conservative in predicting
the displacements under the dynamic loads.

For the dynamic analysis to be of practical interest (a) large number
of small size elements should be considered and ( b ) time interval At should
be very small. Such an analysis would obviously need one of the most
laborious computer programmings.

V
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