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1. Introduction

THE one-dimensional primary consolidation of soils is governed by the
parabolic equation of Terzaghi, viz.,

3U 32 U- = cv .. .( [ )3 Z2dt

where U (Z, t) is the pore-water pressure in excess of hydrostatic, and C„ is
the coefficient of consolidation. Exact solutions to the linear partial
differential Equation (1) can be obtained by the Fourier methods or by
Laplace Transforms for simple initial and boundary conditions. However,
in practice, problems may arise with conditions to which solutions have
not been attained analytically or cannot be found in the available
references. Also with complicated conditions rigorous mathematical
solutions become difficult. Because of the assumptions made in deriving
Equation (1), even the most elaborate mathematical analysis is only an
approximation to the settlement process. Hence, if compromises are to be
made, it appears reasonable to do so with respect to mathematical rigour.
It is, therefore, advisable to introduce approximate methods for handling
solutions so that practical results can be achieved with the degree of
accuracy justified in the light of the amount of information available on
the soil properties at the site and the importance of the structure.
Approximate methods based on finite-difference, iteration and relaxation
have already been proposed. This paper proposes a new technique which
is shown to yield results very close to the exact rigorous solution.

2. The Pseudo-Approximate Method

The quintessence of the new method is that discretisation is carried
out only in space and not in both space and time. Hence, difference

r) 2 Uequations are substituted for the spatial partial derivative - only andd Z 2

Equation (1) is left continuous in time. The resulting pseudo-approximate
recurrence equation is solved using the Laplace Transform.
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Using Taylor’s series, it can be shown that,

82 u -[ u ( z+ AZ, t ) + u ( z — Az, t) — 2u (Z, t )3 . n= Lt
Az->0

Substitution of Equation (2) into Equation (1) and upon taking the
limit AZ to a small finite distance, we obtain

. .. .(2)022 A Z2

[ u ( z+ Az, t ) + u ( z- Az, t ) - 2u ( z, t) JCvdU ...(3)
d t AZ 2

Suppose that the depth H of the clay layer (Figure 1) is discretised
into four finite layers. In this case there are five nodal points and the
AZ’s are equal as shown in Figure 1. Then, we can write

AZ = n Az
where n is a positive integer which can take values 0, 1, 2, 3, 4, in this
discretisation. Furthermore,

•••(5)— ti (i t Az, t) = «„ (0u ( z, t )
U (z+ Az, t ) = U [(/I+ l) Az, ?] = Wn+l (0
U ( z— Az, t ) = U [(«—1) Az, t] = Wn-l ( t )

.. . (6)

...(7)

, v 8U , K ^ dun (0
3, <*•'> - *r
8« . . .(8)
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FIGURE 1 : Clay layer discretised in space.
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Substitution of Equations (5) through (8) in Equation (3) gives,
8Un (0 = ^r[tw (0 + u„_

i (0 - 2 u„ (0] ...(9)81
Equation (9) is a first order differential equation that controls the

excess pore-pressure at the nth node. It is, in fact, a recurrence relation-
ship ; the differential equations for the pore-pressure at the internal nodes

be obtained on substituting n = 1, 2, and 3.

= M [U2 (t )+u0 (0— 2Wl (0 ]
[w3 (0+«i (0—2«2 (0 ]
[«4 (0+«2 (0-2 Ms (0 ]

where M is a modulus defined by

M = Cv

can

...(ro)

3t4(0 _ M • (i i)
rJ

= M . . .(12)
dt

...(13)
A Z2

From Figure 1, the boundary conditions are

u (0, r) = 0 (free-drainage)

u ( H, /) = 0 (free-drainage)

Conditions (14) and (15) imply,

u0 (0 = 0

ut (0 = 0

Substituting Equations (16) and (17) in Equations (10) through
(12), we obtain,

...(14)

...(15)

...(16)

• (17)

= M [u2 (t )-2Ul (,) ]
mi) = M

...(18)

[w3 (0+wx (0-2 w2 (0 J
= M [ua (0-2 M3 (0 J

...(19)
dt

dus(t ) . . .(20)
dt

The initial condition for the consolidation problem may be arbitrarily
assumed as,

u = (Z, 0) = G (Z)
condition (21), for our purposes imply,

M (0) = G (Z)

. . .(21)

.. .(22)
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Taking Laplace transforms of Equations (18), (19) and (20) and
using (22), we obtain,

X
SUi (s) — Wl (0) = M [M2 ( S ) — 2 B1 (5)]

su2 (i) - w2 (0) = M [tig (J) + a* (*) - 2 M2 (*)]

su3 (s) - u3 (0) = M [i?2 (s) - 2 M3 (?)]

...(23)

. . .(24)

.. .(25)

The problem has now beenwhere L [u3 (I)] = Ui (s) and so on.
transformed into the Laplace Plane and we have to solve Equation (23)
through (25) simultaneously to obtain (s) through u3 (s). Rearranging
Equation (23) through (25) we get the following forms :

. . . (26)= «i (0)(1+2*0 M*) - M “z 0)

— M Ui (s) + (s+2 M ) «2 (s) — M ii3 (s) == «2 (0) .. .(27)

•-(28)= «3 (0)-M w2 ( s ) + (̂ f 2 M) u3 (s)

Equations (26) through (28) may be written as,

an «1 (0 + #12 («) + an “a (5) = ky 'j
«21 «1 CO + *22 »2 (0 + *23 «3 (0 = K ^ . . .(29)

#31 «1 (s) + #33 w2 (S) + «33 i/3 (0 =

The condition for the set of Equations (29) to have a unique solution
is

>
*11 *12 *13

-A 1 = ^ 0 .. .(30)*21 *22 *23

*31 ff32 *33

If condition (30) is satisfied, then the set of Equations (29) have a
unique solution given by,

c‘ (s> “ "HM . . .(31)

and
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where
^1 «12 «13

= ^2 «22 «23

I &a «32 «33

«11 ^1 «13

X)a = c/2l k2 a23

«31 ^3 «33

«11 «12 ^1

and D3 = «2i «22 &8

«31 «32

...(32)

The following values of a’s and k’s hold from Equation (29)
through (32)

«11 = s + 2M
«21 = — M
«31 0

— M a13 = 0«12 =
«22 = s + 2Af «23 = — A/

«33 = s + 2M. «32 = — M
and

*1 = «i (0)
h = »2 (0)
k3 = M3 (0)

The determinant | A | can be expanded after inserting the elements,

s + 2 M

— M

M 0

A | = s + 2M -M
0 M s + 2M

. . .(33)= s3 + 6 J2 A/+10 JM2+4 M3

To facilitate the inversion process, the third degree polynomial (33)
can be broken as,

s3 + 6s2 M + 10s M 2 + 4M 3 = (j+a) (s-j-|3) (j+y)
Equating the coefficients of equal powers of s in Equation (34), and

solving for a, (3 and y, we obtain,

...(34)

a = 3 4 1 4 M ^/3 = 0-586 M Jf
y = 2-000 M J

Thus | A | is completely known. By defining the following

.. .(35)

constants,

d„ = M 2 [3 Wl (0) + 2 ut (0) + M8 (0)]
dx = M [4 ux (0) + u2 (0)]

...(36)

...(37)
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ho = 2M 2 [ u,(0) + 2 ut (0) + ua (0)]
hi = M [ «x (0) + 4 «2 (0) + M3 (0)]
/„ = M 2 [ ux (0) + 2 (0) +3I/8 (0)]

= Af [ u2 (0) + 4 u3 (0)1

...(38)
...(39)
...(40)
...(41)

Using (36) through (41) in Equations (31), the final solution in the
Laplace-Plane is obtained in the form,

s2 Uj (0) + J dx + d0 ...(42)«i (s ) = (j+a) (j+p) (y+y)
s2 u2 (0) + sh! + h0 ...(43)(0 = (j+a) (J+p) (J+Y)
J2 tts (0) + g /x + l„ ...(44)«3 W =

The form of Equation (42) through (44) suggests that the inverse
Laplace Transform can be best obtained using the complex inversion
formula and Cauchy’s residue theorem. The inversion process is illustrated
in the typical example that follows.

(j+a) (s+ P) (J+Y)

3. A Typical Example

Consider the initial condition shown in Figure 2, encountered in the
investigation of consolidation settlement resulting from a uniform increase
in excess pore-water pressure with depth. This case, despite its apparent
simplicity, is representative of the state of initial excess pore- water
pressures commonly assumed to exist within a soil specimen in a standard
consolidation test upon the application of an increment of load. The initial
condition is given by,

...(45)U ( z, 0) = P0 = constant
and the boundary conditions are given by Equations (14) and (15).

>Ground surtace

Sand
u ( 0,t ) = 0/

HC I a y •

I fu ( Z,0 ) = PoU (H,t )-0
\ r

S a n d
FIGURE 2 : Initial condition for the example.
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Zero isochrone
T r o

X .1© U,
End isochrone

T = OO H Isochrone
T = 0- 3 7 5© U2

©

FIGURE 3 : Isochrone for typical model computation for line (4), Table I.

The clay-layer is discretised into four equal layers and the five nodes
are numbered as shown. It is seen, from symmetry, that,

u0 (t ) = «4 (t) = 0 (boundary conditions)
«i ( t) = «s (0

The constants defined by Equations (36) through (41) may be
calculatedmsing the following fact,

(°) = “2 (°) = «3 (0) = Po
The following values can be obtained on substitution,

d0 = 6 M 2 P0 ; hx = 6 M P„

dx = 5 M P0 ; 10 = 6 M* P0

h0 = 8 M* Po ; lx = 5 MP0

The value of the modulus is given by Equation (13)f

Z = H/4.

...(46)

...(47)

...(48)

where
16 Co .. .(49)H 2

Using Equations (47) and (48) in (42) through (44) we obtain,

«i (s) = P0 [s2 + 5 Ms + 6 M 2]
(y+a) (5+p) (s+Y)

P0 [S* + 6 M s + 8 M 2 ] .. .(50)«2 © = (j+a) (s+p) (j+y)
and

Po [s* + 5 Ms + 6 M 2 ]
~ (*+«) (s+p) (*+y)«3 (*)
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Thus (s) = «3 (s) as has already been expected (46) from the
symmetry of the initial condition (45).

To invert ux (,?), consider the function,
F (s) = e‘l iil (5)

Then F(s) has three simple poles defined by s=—a, s= — p
aads= — y. The residues, at each of the poles, of the function F(s), are
calculated as follows :

Residue at the first pole,
<h = Lt (s—( — a)] F(s)

s-y(—x )

= Lt (s-f a) e’1 (s)

X
...(51)

P„ (s2+5 MJ+6 M 2)
(s+a) (s+p) (s+y)

<( Pn ( s2+5M s+6M* )
e (s+p) (S+Y)

= Lt (s+a) eH
s-K-*)

= Lt
«•+(—a)

P0 (a2 — 5M a+6M2) e~«t ...(52)
(p-a) (y-oc)

Similarly,

Residue of F(s), at the second simple pole,

P0 [P*-5M p+6M2] e-V ...(53)^ = (X-P) (Y-P)

Residue of F(s), at the third simple pole,

P0 [Y2 — 5M y+6M 2] e- f

(* Y) (P Y)

By the complex inversion theorem, we have,
L~x [MX (•*)] = 2 Residues of e’1 t?x (j)

ui (0 = 'W +’I'a+'ta
Using Equations (35) and (49) in (55) and substituting,

— 71 (time factor)

...(54)'J's =

...(55)i.e.,

...(56)

we obtain,
Po Po13 -656T e —2-344 Ti/i (I) = +e~ ...(57)M71

Using the complex inversion process outlined above, u2 (s) can also
be inverted. The following equation is obtained for M2 (t),

6775

»2 (0 = Po [ 1-207 e~2'344 T - 1 '] .. (58)13- 656Te~4-875
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Using Equations (57) and (58), the values Mi (/) and w2 (/) are calculatedfor various values of T. The results are shown in Table I. The averageconsolidation UaV is calculated for each T using Simpson’s rule. As anexample, the complete set of calculations for line (4) in Table I, are given

Line (4) :

Table I :

35

T = 0-375

uAT )
P0 6-775

= 0-001 + 0-354 = 0-355

- 1 - 207 e~0'879

1 1—5 121 e—0879+ 1-171

U2 ( P ) 1 -5121
4-875 e

= 0- 501 - 0 001 = 0- 500
Po

The isochrone for T = 0 375 is shown in Figure 3. The shaded-area,
using Simpson’s rule,

= [*°+4 Xi+2 *2 +4*3+x4 ]
= -^£+>+ 4 Xi+XjjJ (owing to symmetry)

= 1+4 (0-645) + 0-5 J
0-68 H]-408

Since the total area between the zero and end isochrones is H , the
average percentage consolidation at T = 0"375 is given by,

0- 68 H
H X 100 = 68 per cent.£/«„ =

This completes the set of computations for line (4) of Table I.
TABLE I

Computation for the Example using Author’s Pseudo-Approximate Method.

Uav per cent
(author)

Uav per cent
(Exact)Ut ( T )Vi iT )TLine

1000 0 010000 0001

0-8630-664 410125 402

0-6650 480 56-5 563 0-250
0 500 670- 375 0- 3554 68

0 5005 0-265 0 371 76 76

0-1960 -625 0 -2776 82 82
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TABLE II
Comparison of Author’s Method with the Finite-Difference Method. X

Average consolidation (per cent)

T
Finite- difference

method Author’s meih. d Exact method

0000 t
4041330125
5656 -5540-250
676866- 50-375

X -7676770-500
8282830-625

The last column in Table I, gives the average consolidation values
obtained by an exact solution using Fourier method for this initial condi-
tion. It is seen that the author’s method gives values remarkably close to
the exact solution.

To compare the pseudo-approximate solution with the traditional
finite difference method, the same example is worked out using the finite-
difference method and the values are entered in Table II. On comparison,
it is seen that in the finite-difference method, the error is large and the
error exists always. But in the pseudo-approximate method the error is
negligibly small and there is no residual error as the time passes on.
4. Conclusions

The pseudo-approximate method presented herein appears to be the
most powerful and elegant for solving the consolidation Equation (1)
subjected to any type of initial condition. The operation is rather easy
and it does not involve the tedium encountered in an exact solution. How-
ever, the results are surprisingly close to the exact values.
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